モジュライ空間の幾何と3・4次元多様体の不変量の研究

模空间几何和 3 维和 4 维流形不变量的研究

基本信息

  • 批准号:
    07740050
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

サイバーグ.ウィッテンによる4次元多様体上のモノポール方程式を用いて、シンプレクティック4次元多様体に関するいくつかの結果を得た。主な結果は次の通りである。スカラー曲率が正であるリーマン計量を許容するシンプレクティック4次元多様体は、ブロ-アップ・ダウンを除いて有理曲面か線織面に微分同相であること、また接束の第一チャーン類とシンプレクティック2形式との積の積分が正であるシンプレクティック4次元多様体は、やはりブロ-アップ・ダウンを除いて有理曲面か線織面に微分同相であることを証明した。特に接束の第一チャーン類がシンプレクティック2形式の定める2次のコホモロジー類と正に比例するならば、それはデルペソ曲面に微分同相であることを証明した。これらの証明には、モノポール方程式の解のモジュライ空間を用いたサイバーグ.ウィッテン不変量が計量や摂動に依存する場合(交叉形式の正固有値が一つの場合)にその依存性そ解析すること及び、タウベスによるモノポール方程式の解とJ曲線との関係を用いることによる。他にもマンフォードによる擬射影平面に入りうるシンプレクティック構造の制約や有理曲面と極小一般型代数曲面は微分同相になりえないことの簡単な証明も与えた。後者は、S^2×S^2と微分同相な一般型代数曲面は存在しないだろうというヒルツェブルフ予想、これはキンにより解かれている、やコチック等による結果を含むものであり、しかも我々の証明はかなり簡単になっている。これらは全て、お茶の水大学理学部数学教室の小野薫氏との共同研究による成果である。
サイバーグ. The results of the equation for the 4-dimensional polyhedron are obtained. The main result is the second time. The first class of curvature, the product of the first class of curvature, the fourth class of curvature, the third class of curvature, the fourth class of curvature, the fourth class of curvature, the A rational surface, a linear surface, a differential in-phase, and a proof. Special connection of the first class of the second class of the first class The proof of this problem is that the solution of the equation. When the quantity is not measured, the dependency is analyzed and the solution of the equation is used. He is a projective plane. He is a rational surface. He is an algebraic surface. He is a simple projective plane. The latter is opposite, S^2×S^2, differential in-phase, algebraic surface of general type, existence, solution, solution, The results of joint research by Ono

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ohta and K.Ono: "Notes on symplectic 4-manifolds with b_+^+=1" Proc.Taniguchi Symp,“Moduli of Vector Bucller". (inpress).
H.Ohta 和 K.Ono:“关于 b_+^+=1 的辛 4-流形的注释”Proc.Taniguchi Symp,“向量 Bucller 的模数”(inpress)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

太田 啓史其他文献

太田 啓史的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('太田 啓史', 18)}}的其他基金

Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
  • 批准号:
    23K20796
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
深谷圏と完全WKB解析
深谷球和完整的 WKB 分析
  • 批准号:
    21K18576
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
  • 批准号:
    21H00983
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
3,4次元多様体の不変量のゲージ理論による研究
使用 3 维和 4 维流形不变量规范理论进行研究
  • 批准号:
    06740046
  • 财政年份:
    1994
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
3,4次元多様体の不変量のゲージ理論による研究
使用 3 维和 4 维流形不变量规范理论进行研究
  • 批准号:
    06221217
  • 财政年份:
    1994
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
三,四次元多様体の不変量を導出,研究事,その幾何構造を解明すること
导出三维和四维流形的不变量,研究并阐明其几何结构
  • 批准号:
    04740017
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    ARC Future Fellowships
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
  • 批准号:
    10752122
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
  • 批准号:
    23H01173
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
  • 批准号:
    10551184
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Molecular and functional characterization of olfactory pathways in the arbovirus vector mosquito Aedes aegypti
虫媒病毒载体蚊子埃及伊蚊嗅觉通路的分子和功能特征
  • 批准号:
    10638710
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了