深谷圏と完全WKB解析
深谷球和完整的 WKB 分析
基本信息
- 批准号:21K18576
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Challenging Research (Exploratory)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-07-09 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
研究代表者とその共同研究者たち執筆によるリサーチモノグラフ`Kuranishi structures and virtual fundamental chains' (Springer-Nature,2020年)において導入した「線形Kシステム」を、一般的なMorse-Bottの仮定の下で、シンプレクティック多様体上の周期的Hamilton系に関するFloer方程式の解のモジュライ空間を用いて幾何学的に実現し、かつその不変性と比較定理を証明した。これによりMorse-Bottの仮定の下で、Hamilton方程式の周期解の個数に関するBetti数版Arnold予想が従う。レフェリーとのやりとりを経て、この論文が無事C. Viterbo氏の60歳Festchrift volumeに掲載された。このことは当該研究コミュニティにとって大きな意味をもつと考えられる。以上、深谷賢治氏(米国 Simons Center for Geometry and Physics)、Yong-Geun Oh氏(韓国 Institute for Basic Science, Center for Geometry and Physics )、小野薫氏(京都大学数理解析研究所)と研究代表者との共同研究である。また、研究分担者は、あるクラスのスペクトル曲線に対し、位相的漸化式が定める分配函数や量子曲線のVoros係数と、スペクトラル・ネットワークが定めるBPS構造との関係を調べた。特に、BPS構造のタウ函数と位相的漸化式の分配函数のBorel和が本質的に一致することを示したことが主結果である。これらの成果は、今後深谷圏の解析的研究を深める上で重要な知見を与えると期待される。さらに、Stokes曲線とFloer理論との関係に着目し、萌芽的な考察と議論を研究分担者の間で共有することができた。
Study Representative: (Springer-Nature, 2020) To introduce the concept of "linear K-state", the general Morse-Bott equation, the periodic Hamiltonian system on multi-objects, the solution of the Floer equation, the realization of the geometric space, the invariance of the solution, and the proof of the comparison theorem. The number of periodic solutions of the Hamilton equation is related to the number of periodic solutions of the Morse-Bott equation.レフェリーとのやりとりを経て、この论文が无事C. Viterbo's 60-year-old Festchrift volume was revealed. This is the first time I've ever been to a school. The above, Kenji Furuya (Simons Center for Geometry and Physics, USA), Yong-Geun Oh (Institute for Basic Science, Center for Geometry and Physics, Korea), Ono (Institute of Mathematical Analysis, Kyoto University), and research representatives. The distribution function of Voros coefficient and phase distribution function of quantum curve are adjusted. In particular, the BPS structure of the phase function of the gradual distribution function of the Borel and the essence of the agreement between the two results The results of this study are expected to be profound and important in the analysis of deep valleys in the future. In addition, the relationship between the Stokes curve and Floer theory has become a focus, and the budding investigations and discussions are shared among the research contributors.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological recursion, uncoupled BPS structures and exact WKB analysis
拓扑递归、非耦合 BPS 结构和精确的 WKB 分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Minh Anh Truong;Tsukasa Funasaki;Lucas Ueberricke;Wataru Nojo;Richard Murdey;Takumi Yamada;Shuaifeng Hu;Tomoya Nakamura;Nobutaka Shioya;Takeshi Hasegawa;Yoshihiko Kanemitsu;Takanori Suzuki;Atsushi Wakamiya;Iwaki Kohei
- 通讯作者:Iwaki Kohei
Voros Coefficients for the Hypergeometric Differential Equations and Eynard-Orantin’s Topological Recursion: Part I-For the Weber Equation
超几何微分方程的 Voros 系数和 Eynard-Orantin 拓扑递归:第一部分 - 对于韦伯方程
- DOI:10.1007/s00023-022-01235-4
- 发表时间:2022
- 期刊:
- 影响因子:1.5
- 作者:Kohei Iwaki;Tatsuya Koike;Yumiko Takei
- 通讯作者:Yumiko Takei
Renormalization and Floer theory II : Gauge fixing in pseudo-isotopy and promotion
重整化和弗洛尔理论 II:赝同位素中的规范固定和推广
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hiroyuki Fuji;Kohei Iwaki;Hitoshi Murakami and Yuji Terashima;Hiroshi Ohta;Hiroshi Ohta
- 通讯作者:Hiroshi Ohta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
太田 啓史其他文献
太田 啓史的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('太田 啓史', 18)}}的其他基金
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
- 批准号:
23K20796 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
- 批准号:
21H00983 - 财政年份:2021
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
モジュライ空間の幾何と3・4次元多様体の不変量の研究
模空间几何和 3 维和 4 维流形不变量的研究
- 批准号:
07740050 - 财政年份:1995
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
3,4次元多様体の不変量のゲージ理論による研究
使用 3 维和 4 维流形不变量规范理论进行研究
- 批准号:
06740046 - 财政年份:1994
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
3,4次元多様体の不変量のゲージ理論による研究
使用 3 维和 4 维流形不变量规范理论进行研究
- 批准号:
06221217 - 财政年份:1994
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
三,四次元多様体の不変量を導出,研究事,その幾何構造を解明すること
导出三维和四维流形的不变量,研究并阐明其几何结构
- 批准号:
04740017 - 财政年份:1992
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
- 批准号:
23K20796 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
正則曲線の理論、Floer 理論の発展と接触構造・シンプレクティック構造の研究
正则曲线理论、Floer理论的发展以及接触和辛结构的研究
- 批准号:
24H00182 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant
CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
- 批准号:
2238103 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Continuing Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304206 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant
MPS-Ascend: Topics in Low-Dimensional Topology and Heegaard Floer Theory
MPS-Ascend:低维拓扑和 Heegaard Floer 理论主题
- 批准号:
2213027 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Fellowship Award
Floer Theory, Arc Spaces, and Singularities
弗洛尔理论、弧空间和奇点
- 批准号:
2203308 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant
Floer theory beyond Floer (FloerPlus35)
Floer 之外的 Floer 理论 (FloerPlus35)
- 批准号:
EP/X030660/1 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Research Grant
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 4.16万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




