Representation Theoretic and/or Geometric Research for Theta Series
Theta 级数的表示理论和/或几何研究
基本信息
- 批准号:09640005
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) The classical correspondence between Jacobi forms and Sigel cusp forms of half-integral weights is studied from representation theoretic point of view. The basic tool is Well representation. The results are published on "On Siegel modular forms of half-integral weights and Jacobi forms" (Trans. A.M.S.351 (1999), pp.735-780).(2) Hermite polynomials of multi-variables are defined in two ways through a detailed study of the irreducible decomposition of the Weil representation of Sp(n, *) restricted to the dual pair (U(n), U(1)). As K-type vectors for K = U(n), we will get products of the classical (one-variable) Hermite polynomials which give a complete system of the solutions of the Schrodinger equation of n-dimennsional harmonic ascillator. On the other hand, as K-type vectors for K = U(1), we will get another complete system of the solution of the Schrodinger equation which is not of separated variables, The results will be published on the paper "K-type vectors of Weil representat … More ion and generalized Hermite polynomials".(3)Weil's generalized Poisson summation formula, which is valid only for theta group, is extended to the general paramodular groups. As applications ; 1) a representation theoretic proof of the transformation formula of Riemann's theta series, and 2) the transformation formula of theta series associated with a integral quadratic form with harmonic polynomials. The results will be published on the paper "On an extension of generalized Poisson summation formuls of Weil and its applications".(4) We applied the method of T.Shintani (J.Fac. Sci. Univ. Tokyo 22 (1975), pp. 25-56) to the general semi-simple algebraic group over *, and found that a part of the dimmension formula of the space of the automorphic forms attached to an integrable representaton is given by a special values of the zeta functions of pre-homogeneous vector space of parabolic type srising from a maximal parabolic subgroup defined over *. Also we found that there seems to exist an interesting relationship between the non-zero set of the Fourier tranform of the spherical trace function of the integrable representaiton and the Zariski open orbit of the pre-homogeneous vector space. A part of the results will be published on the proceeding of the Autumn Workshop on Number Theory at Haluba (1998). Less
(1)从表示论的角度研究了半积分权的Jacobi形式和Sigel尖点形式之间的经典对应关系。基本工具是井表示。结果发表在“On Siegel modular forms of half-integral weights and Jacobi forms”上(Trans. A.M.S.351 (1999), pp.735-780)。 (2) 通过详细研究限制于对偶对的 Sp(n, *) Weil 表示的不可约分解,以两种方式定义多变量的 Hermite 多项式 (U(n),U(1))。作为 K = U(n) 的 K 型向量,我们将得到经典(一变量)Hermite 多项式的乘积,它给出了 n 维谐振子薛定谔方程的完整解系。另一方面,作为K = U(1)的K型向量,我们将得到另一个完整的非分离变量薛定谔方程解的系统,其结果将发表在论文“K-type向量的Weilrepresentat… More ion and Generalized Hermite polynomials”上。 (3)推广仅对theta群有效的Weil的广义泊松求和公式 到一般的副模块群。作为应用程序; 1)黎曼theta级数变换公式的表示理论证明,2)与调和多项式积分二次形式相关的theta级数变换公式。其结果将发表在论文《On an extension ofgeneralized Poisson summation Formulas of Weil and its applications》上。 (4)我们将T.Shintani的方法(J.Fac.Sci.Univ.Tokyo 22 (1975), pp.25-56)应用到*上的一般半简单代数群上,发现附有的自同构空间的维数公式的一部分 可积表示由抛物型预齐次向量空间的 zeta 函数的特殊值给出,该向量空间源自 * 上定义的最大抛物型子群。我们还发现,可积表示的球迹函数的傅里叶变换的非零集与预齐次向量空间的 Zariski 开轨道之间似乎存在有趣的关系。部分结果将在 Haluba 秋季数论研讨会(1998 年)的会议记录上发表。较少的
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koichi Takase: "On Siegel Modular Forms of Half-Integral Weights and Jacobi-Forms" The Transactions of A.M.S.351. 735-780 (1999)
Koichi Takase:“论半积分权重和雅可比形式的西格尔模形式”A.M.S.351 的交易。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高瀬幸一: "T., Ibubiyama, M, Saito 「On Zeta Functions Associated to Sym. Mat.」の紹介" 整数論オータムワークショップ報告集. to appear.
Koichi Takase:“T.、Ibubiyama、M、Saito 介绍‘与 Sym. Mat 相关的 Zeta 函数’”数论秋季研讨会报告集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takemoto, H.: "A characterization of the power partially isometric operators" Bull.Miyagi Univ.Edu.(to appear).
Takemoto, H.:“幂部分等距算子的表征”Bull.Miyagi Univ.Edu.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaki and Takemoto: "The numerical radius of infinite directed regular graph" Math.Japonica. 45. 337-343 (1997)
Masaki 和 Takemoto:“无限有向正则图的数值半径”Math.Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koichi Takase: "On Theta Series wich Havmonic Polynomtals or Hermite Polynomla" Cmmentary Math. Univ. St. Pauli. 46. 57-91 (1997)
Koichi Takase:“论 Havmonic 多项式或 Hermite 多项式的 Theta 系列”注释数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKASE Koichi其他文献
TAKASE Koichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKASE Koichi', 18)}}的其他基金
Motives of Donor Countries on their Official Development Assistances
捐助国官方发展援助的动机
- 批准号:
20530253 - 财政年份:2008
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the spherical function of discrete series representations from the point of view of the theory of automorphic forms
从自守型理论角度研究离散级数表示的球函数
- 批准号:
20540005 - 财政年份:2008
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on discrete series representations and the theory of automorphic forms
离散级数表示和自守形式理论的研究
- 批准号:
17540005 - 财政年份:2005
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of the Japanese Development Assistance on the Economic Growth of Recipient Countries
日本发展援助对受援国经济增长的影响
- 批准号:
15530194 - 财政年份:2003
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the dimension formula of automorphic forms associated with an integrable representation
与可积表示相关的自守形式的维数公式研究
- 批准号:
14540003 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic studies on Abelian surfaces
阿贝尔曲面的算术研究
- 批准号:
11640006 - 财政年份:1999
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Chiral de Rham complex and automorphic forms
手性德拉姆复合体和自守形式
- 批准号:
23K19008 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant














{{item.name}}会员




