The study of arithmetic and analytic property of automorphic forms and zeta function associated with them and numerical analysis
自守形式及其相关zeta函数的算术和解析性质研究及数值分析
基本信息
- 批准号:09640018
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Under assumptions of the multiplicity one theorem of Hecke operators, H.Kojima deduced an explicit relation between the square of Fourier coefficients a(4n) at a. fundamental discriminant 4n of modular forms f(x)=SIGMAepsilon(-1)^kn=0,1(4), n>0 a(n)e[nzl belonging to the Kohnen's space of half integral weight (2k+1)/ and of arbitrary odd level N with primitive character x and the critical value of the zeta function of the modular form F which is the image of f under the Shimura correspondence PSI.Our methods of the proof are the same as those of Shimura. We treated the excluding case in the Shimura's paper concerning Fourier coefficients of Hilbert modular forms of half integral weight and our results gave a generalization and development of Shimura' results. Moreover, using this method, we derived an analogous results in the case of Maass wave forms of half integral weight belonging to Kohnen's spaces.(2) Oshikiri proves that if the codimension of a bundle-like foliation F of a Riemannian manifold (M, g) with positive sectional curvature is even, then F hasa compact leaf, and that if the codimension of F is odd, then F has a leaf whose closure is a codimension (q- 1) closed submanifold of M.(3) As ingredients for the order problem of the Riemann zeta-function, Miyai investigated alternative explicit formulas for various arithmetic exponential sums relating to the problem. On constructing the cosinus form for the Atkinson phase function f(T, n), he gave an explicit formula for |zeta(1/+iT)|^2.(4) Tayoshi considered the equation of the vibration of a elastic string in 3-dimensional space. Supposing Hooke's law and certain Lagrangian density, on the basis of analytic mechanics, he derived a system of nonlinear partial differential equations, which, in our expectation, describes the vibration of the string. Moreover, he obtained some stationary solutions.
(1)H.Kojima在Hecke算子重数为1的假设下,导出了Fourier系数a(4 n)的平方在a处的显式关系。模形式f(x)= SIGMAn(-1)^kn= 0,1(4)的基本判别式4 n,n>0 a(n)e[nzl]属于半整权Kohnen空间(2k+1)和任意奇数级N上本原特征标为x的Zeta函数的一个新的证明,以及模形式F的zeta函数的临界值,它是f在Shimura对应PSI下的象,我们的证明方法与那些证明相同关于Shimura本文讨论了Shimura关于半整权Hilbert模形式的Fourier系数的论文中的排除情形,所得结果推广和发展了Shimura的结果。此外,利用这种方法,我们还得到了半整权的Maass波型属于Kohnen空间时的类似结果。(2)Oshikiri证明了:如果具有正截面曲率的黎曼流形(M,g)的类梭叶F的余维数是偶数,则F是紧叶;如果F的余维数是奇数,则F有一个叶,其闭包是M的余维数(q- 1)闭子流形。(3)作为成分的顺序问题的黎曼zeta函数,宫井调查替代明确公式的各种算术指数和有关的问题。在构造阿特金森相位函数f(T,n)的余弦形式时,他给出了一个明确的公式:|zeta(1/+iT)|^2。(4)Tayoshi考虑了三维空间中弹性弦的振动方程。假设胡克定律和一定的拉格朗日密度,他在分析力学的基础上导出了一个非线性偏微分方程组,我们期望它能描述弦的振动。此外,他还得到了一些定态解。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Kojima: "The formula for the dimension of the spaces of vector valued holomorphic automorphic forms on the unitary group su(1, p)" Kyushu J.of Math. 51. 57-76 (1997)
H.Kojima:“酉群 su(1, p) 上向量值全纯自守形式的空间维数公式”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Kojima: "On explicit construction of Hilbert-Siegel modular forms of degree two" Acta Arith.LXXXI.3. 265-274 (1997)
H.Kojima:“关于二级希尔伯特-西格尔模形式的显式构造”Acta Arith.LXXXI.3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Oshikiri: "Co dimension-one-foliations and oriented graphs" Tohoku Math,J.(発表予定). (1999)
G. Oshikiri:“Co 维一叶和有向图”Tohoku Math, J.(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hisashi Kojima: "On explicit construction of Hilbert-Siegel modular forms of degree two" Acta Arithmetica. LXXX1.3. 265-274 (1997)
Hisashi Kojima:“关于二级希尔伯特-西格尔模形式的显式构造”《算术学报》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hisashi Kojima: "Fourier coefficients of modular forms of half integral weight,periods of modular forms and special values of ζ functions" Hiroshima Math.J.27. 361-371 (1997)
小岛恒:“半积分权的模形式的傅里叶系数、模形式的周期和 z 函数的特殊值”Hiroshima Math.J.27(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOJIMA Hisashi其他文献
KOJIMA Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOJIMA Hisashi', 18)}}的其他基金
An arithmetic study of modular forms of half integral weight and Siegel modular forms
半积分权模形式和Siegel模形式的算术研究
- 批准号:
18540013 - 财政年份:2006
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and Siegel modular forms
半积分权模形式与Siegel模形式傅立叶系数的算术研究
- 批准号:
16540003 - 财政年份:2004
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and the special values of zeta functions
半积分权模形式傅里叶系数及zeta函数特殊值的算术研究
- 批准号:
14540002 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of automorphic forms and modular forms and zeta functions
自守形式和模形式的傅里叶系数以及zeta函数的算术研究
- 批准号:
11640004 - 财政年份:1999
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An electrophysiological study on the mechanism of seizure generation in rat brain slices : the effect of adenosine on epileptiformactivities.
大鼠脑切片癫痫发作机制的电生理学研究:腺苷对癫痫样活动的影响。
- 批准号:
04670847 - 财政年份:1992
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Modular forms of half-integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
- 批准号:
23KJ1824 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
- 批准号:
23K03031 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Arithmetic Properties of Modular Forms and Hypergeometric Systems
模形式和超几何系统的算术性质
- 批准号:
2302531 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
- 批准号:
2301738 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant














{{item.name}}会员




