Arithmetic study of Fourier coefficients of automorphic forms and modular forms and zeta functions
自守形式和模形式的傅里叶系数以及zeta函数的算术研究
基本信息
- 批准号:11640004
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kojima's results(1) Under the assumption of the multiplicity 2 theorem, we determined an explicit relation between the square of Fourier coefficients of modular forms f belonging to the Kohnen's space of half integral weight and of arbitrary oddlevel with arbitrary primitive character and special values of the zeta function of the modular form F which is the image of f under the Shimura correspondence.(2) We constructed the Shimura correspondence S from Maass wave forms f of half integral weight over imaginary quadratic fields to those g of integral weight. We shall determine explicitly the Fourier coefficients of g in terms of these of f. Under some assumptions about the multiplicity one theorem with respect to Hecke operators, we deduced an explicit connection between the square of Fourier coefficients of modular forms f of half integral weight over imaginary quadratic fields and the critical value of the zeta function associated with S(f). Moreover, we generalized those results in the case of Maass wave forms f of half integral weight over arbitrary number fields. This yield a generalization of Shimura's formula concerning Fourier coefficients of Hilbert modular forms f of half integral weight over imaginary quadratic fields.(3) Under the assumptions about f concerning the multiplicity one theorem with respect to Hecke operators, we deduced an explicit connection between the square of Fourier coefficients of f and the critical value of the zeta function associated with the image of Shimura correspondence, which gives a further concise improvement of the results (1)(4) We determined explicitly the trace of representations of certain linear group over finite field into the spaces of modular forms of half integral weight, Jacobi forms and automorphic forms on SU(2,1). In the some case, we can determine the multipicity of representation.
(1)在多重性2定理的假设下,我们确定了属于半积分权的Kohnen空间的任意奇级具有任意基元特征的模形式f的傅里叶系数的平方与模形式f的特殊值之间的显式关系,该函数是f在Shimura对应下的像。(2)构造了虚二次场上半积分权质量波形f到积分权质量波形g的Shimura对应S。我们将用f的傅里叶系数显式地确定g的傅里叶系数。在关于Hecke算子的多重定理的一些假设下,我们推导出虚二次域上的半积分权模形式f的傅里叶系数的平方与与S(f)相关的ζ函数的临界值之间的显式联系。此外,我们将这些结果推广到任意数场上的半积分权的质量波形f。这是Shimura关于希尔伯特模形式f在虚二次域上的半积分权的傅里叶系数公式的推广。(3)在关于f关于Hecke算子多重定理的假设下,我们推导出f的傅里叶系数的平方与与Shimura对应像相关的zeta函数的临界值之间的显式联系;(4)我们明确地确定了有限域上某线性群的表示在SU(2,1)上的半积分权模形式、Jacobi形式和自同构形式空间中的迹。在某些情况下,我们可以确定表示的多重性。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Boudern,K.Kawada,T.D.Wooley: "Additive representation in thin sequences,I.;Waring's problem for cubes."Ann.Scient.Ec.Norm Sup.. (to appear).
J.Boudern、K.Kawada、T.D.Wooley:“薄序列中的加法表示,I.;立方体的华林问题。”Ann.Scient.Ec.Norm Sup..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G. Oshikiri: "Some differential geometric properties of codimension-one foliations of polynomial growth"to appear in Tohoku Math. J..
G. Oshikiri:“多项式增长的余维一叶的一些微分几何性质”出现在东北数学中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Kojima: "On the Fourier coefficients of Maass wave forms of half integral weight over an imaginary quadratic field"J. Reine Angew. Math.. 526. 155-179 (2000)
H. Kojima:“关于虚二次域上半积分权重的 Maass 波形的傅立叶系数”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Kojima: "On the trace of the representation of SL(2,Z/NZ) in the space of modular forms of half integral weight"Interdisciplinary information Sciences. 6. 129-137 (2000)
H. Kojima:“半积分权模形式空间中 SL(2,Z/NZ) 表示的踪迹”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Oshikiri: "On trausuerse. Killing fields of metric foliation of manifold with positive curvature"manuscripta math. 104. 527-531 (2001)
G.Oshikiri:“On trausuerse。杀死正曲率流形的度量叶化场”数学手稿。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOJIMA Hisashi其他文献
KOJIMA Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOJIMA Hisashi', 18)}}的其他基金
An arithmetic study of modular forms of half integral weight and Siegel modular forms
半积分权模形式和Siegel模形式的算术研究
- 批准号:
18540013 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and Siegel modular forms
半积分权模形式与Siegel模形式傅立叶系数的算术研究
- 批准号:
16540003 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and the special values of zeta functions
半积分权模形式傅里叶系数及zeta函数特殊值的算术研究
- 批准号:
14540002 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of arithmetic and analytic property of automorphic forms and zeta function associated with them and numerical analysis
自守形式及其相关zeta函数的算术和解析性质研究及数值分析
- 批准号:
09640018 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An electrophysiological study on the mechanism of seizure generation in rat brain slices : the effect of adenosine on epileptiformactivities.
大鼠脑切片癫痫发作机制的电生理学研究:腺苷对癫痫样活动的影响。
- 批准号:
04670847 - 财政年份:1992
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Modular forms of half-integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
- 批准号:
23KJ1824 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
- 批准号:
23K03031 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Arithmetic Properties of Modular Forms and Hypergeometric Systems
模形式和超几何系统的算术性质
- 批准号:
2302531 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
- 批准号:
2301738 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant