Studies on Representations of Finite Groups and Applications

有限群表示及其应用研究

基本信息

  • 批准号:
    09640063
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

1. (A) We gave a detailed description of the fiber over the origin of Hilbert-Chow morphism from G-orbit Hubert scheme, HilbィイD1GィエD1(CィイD13ィエD1), to CィイD13ィエD1/G in the case where G is a fnite simple subgroup of SL(3, C) of order 60 or 168. This work is being clone jointly with I. Nakamura.(B1) We defined a character sum, called a gaussian sum, over a finite reductive group and showed that if the sum is associated with the Delige-Lusztig generalized character, then it is expressed explicitly as a sum over the torus ; as an application we also showed that in the case of finite classical groups, the sum can be expressed using Kloosterman sums and unitary Kloosterman sums. N. Saito works jointly with us on this problem.(B2) We investigated Hasse-Davenport type relation for Kloosterman sums and unitary Kloosterman sums ; we also applied it to the norm map of Gelfand-Graev representation of GL (2, q) ; jointly studied with C. W. Curtis (Oregon U.)c We determined the values of 7 unipotent almost characters of finite Chevalley groups of type FィイD24ィエD2 without assumuptions on characteristic of the ground field ; some of them were known already.2. We showed that the Hasse princile holds for symmetric groups and alternating groups, etc. (Wada ; joint with T. One)3. We gave a method, called the polyhedral realization, to describe the crystal base associated with aim irrreducible highest weight module of a quantum group. (Nakashimna)4. We classified the case when the parabolic Heck algebras remain semisimple after specializing over arbitrary field. (Gomi)5. From the standpoint of Number Theory, we investigated the ranks on the stable derivation algebra related with Dehigne's problem (Tsunogai) and also zeta functions associated with the Riemmiannian symmetric space of rank 1 and the discrete coconipact automorphism subgroup. (Tsuzuki)
1. (A)在G是SL(3,C)的60阶或168阶有限单群的情况下,详细描述了从G-轨道Hubert方案,Hilb_D_1 G_(13)Hubert D_1(C_(13)Hubert D_1)到C_(13)Hubert D_1/G的Hilbert-Chow态射原点上的纤维.这部作品正在和我联合克隆。中村。(B1)我们在有限约化群上定义了一个特征和,称为高斯和,并证明了如果该和与Delige-Lusztig广义特征有关,则它明确表示为环面上的和;作为应用,我们还证明了在有限经典群的情况下,该和可以用Kloosterman和和酉Kloosterman和来表示。N.齐藤正与我们共同解决这个问题。(B2)研究了Kloosterman和与酉Kloosterman和的Hasse-Davenport型关系,并将其应用于GL(2,q)的Gelfand-Graev表示的范数映射,与C. W.柯蒂斯(俄勒冈州大学)c在不假设基场特征的情况下,我们确定了FイD24 D2型有限Chevalley群的7个幂单几乎特征标的值;其中一些是已知的。2.我们证明了Hasse原理对对称群和交错群等都成立。1)3.给出了一种描述量子群目标可约最高权模对应的晶格基的方法,称之为多面体实现。(Nakashimna)4.对抛物Heck代数在任意域上特殊化后保持半单的情形进行了分类。(五米)5.本文从数论的观点出发,研究了与Dehigne问题(Tsunogai)有关的稳定导子代数的秩,以及与秩为1的黎曼对称空间和离散余紧自同构子群有关的zeta函数.(津月)

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C. W. Curtis: "Unitary Kloosterman sums and the Gelfand-Graev representation of GL_2"J. of Algebra. 216. 431-447 (1999)
C. W. Curtis:“Unity Kloosterman sums 和 GL_2 的 Gelfand-Graev 表示”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Ono: ""Hasse principle" for symmetric and alternating groups"Proc. Japan Academy. 75. 61-62 (1999)
T. Ono:“对称群和交替群的“哈斯原理””Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakashima: "Polyhedaral realizations of crystal bases and braid-type isomorphisms"Contemporary Math.. 248. 419-435 (1999)
T.Nakashima:“晶体基和编织型同构的多面体实现”当代数学.. 248. 419-435 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakashima: "Polyhedaral realizations of crystal bases for integrable heighest weight modules"Journal of Algebra. 219. 571-597 (1999)
T.Nakashima:“可积最高重量模块的晶体基的多面体实现”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Wada, Hideo, Takashi Ono: ""Hasse principle" for free groups"Proc.Japan Acad.. 75A. 1-2 (1999)
Wada、Hideo、Takashi Ono:“自由群体的“哈斯原理””Proc.Japan Acad.. 75A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHINODA Ken-ichi其他文献

SHINODA Ken-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHINODA Ken-ichi', 18)}}的其他基金

Developing methods for analysis of ancient pathogens using next-generation sequencing
使用下一代测序开发分析古代病原体的方法
  • 批准号:
    15K14615
  • 财政年份:
    2015
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of the relationship between Jomon and immigrant Yayoi people using whole genome sequencing data
利用全基因组测序数据分析绳文人和移民弥生人的关系
  • 批准号:
    25251043
  • 财政年份:
    2013
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of the origin and population history of the modern Ainu through morphological and genetic anaylsis
通过形态和遗传分析阐明现代阿伊努人的起源和人口历史
  • 批准号:
    22370088
  • 财政年份:
    2010
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation of finite groups, character sums, and their applications
有限群、字符和的表示及其应用
  • 批准号:
    21540024
  • 财政年份:
    2009
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationships between the human migration and the cultural changes in ancient Andean society
人类迁徙与古代安第斯社会文化变迁的关系
  • 批准号:
    19405016
  • 财政年份:
    2007
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representations of finite reductive groups and applications
有限约简群的表示及应用
  • 批准号:
    18540047
  • 财政年份:
    2006
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on the zeta functions attached with the irreducible representations of finite reductive groups
有限约简群不可约表示的zeta函数研究
  • 批准号:
    14540042
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on representations of algebraic groups and finite groups, and applications
代数群和有限群的表示研究及应用
  • 批准号:
    12640040
  • 财政年份:
    2000
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the phylogenetic relationships between the omon and Yayoi poputations through mitochondrial DNA sequence
通过线粒体DNA序列分析大蒙族和弥生族群的系统发育关系
  • 批准号:
    11640709
  • 财政年份:
    1999
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Improving the Higgs mass measurement resolution using the gaussian sum filter
使用高斯和滤波器提高希格斯质量测量分辨率
  • 批准号:
    444383-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving the Higgs mass measurement resolution using the gaussian sum filter
使用高斯和滤波器提高希格斯质量测量分辨率
  • 批准号:
    444383-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving the Higgs mass measurement resolution using the gaussian sum filter
使用高斯和滤波器提高希格斯质量测量分辨率
  • 批准号:
    444383-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了