Study on representations of algebraic groups and finite groups, and applications

代数群和有限群的表示研究及应用

基本信息

  • 批准号:
    12640040
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

1. We studied the coinvariant algebras of finite subgroups G of SL(3, C). Particularly for the simple groups G of order 60, 168, we investigated the fiber of Hilb^<|G|>(C^3) over the origin (joint work with Nakamura (Hokkaido U.)). Also we showed that for the subgroups of SL(3, R), the fibers are the finite union of P^1. As a consequence of these studies, we could also show that the relations of Molien series and representation graphs, which have been studied by Springer, McKay, etc, for finite subgroups of SL(2, C), can be generalized for finite subgroups of SL(n, C) using the Koszul complex. (Shinoda, Gomi)2. Shinoda studied the properties of Gauss sums for finite reductive groups applying the theory of Deligne-Lustzig. Particularly for the semisimple representaions of classical groups and for the unipotent representations of G_2(q), we had explicit formula for the corresponding Gauss sums (jointly with N. Saito (Sophia U.)).3. We also obtained the following results :(1) Tsuzuki studied the Shintani functions on real Lie group U(n, 1) obtaining an explicit formula of the Shintani functions and also some multiplicity-free theorem for the corresponding represntation.(2) Nakashima realized irreducible representaions of finite dimensional quantum algebras of type A at root of unity through the representations of quantum group U_ε of type A of non-restricted specialization.(3) Goto clarified the structure of Goodman-de la Harpe-Jones subfactors using combinatorial methods.(4) Koga realized Wakimoto representation for the affine Lie superalgebra of type A and obtained a charcter formula for the heighest weight, representations (jointly with K. Iohara (Kobe U.)).
1. 研究了SL(3, C)的有限子群G的协不变代数。特别是对于60,168阶的简单群G,我们研究了Hilb^<|G|>(C^3)在原点上的纤维(与Nakamura (Hokkaido U.)合作)。我们还证明了对于SL(3, R)的子群,纤维是P^1的有限并。作为这些研究的结果,我们也证明了施普林格、McKay等研究的SL(2, C)有限子群的Molien级数和表示图的关系,可以用Koszul复形推广到SL(n, C)的有限子群。(信田,无味)2。Shinoda运用delign - lustzig理论研究了有限约化群高斯和的性质。特别是对于经典群的半简单表示和G_2(q)的幂偶表示,我们(与N. Saito (Sophia U.)共同)给出了相应的高斯和的显式公式。(1) Tsuzuki研究了实李群U(n, 1)上的Shintani函数,得到了Shintani函数的显式公式,并给出了相应表示的若干无重性定理。(2) Nakashima通过非限制专门化的A型量子群U_ε的表示实现了A型有限维量子代数在单位根上的不可约表示。(3) Goto用组合方法阐明了Goodman-de - la Harpe-Jones子因子的结构。(4) Koga实现了A型仿射李超代数的Wakimoto表示,并(与K. Iohara (Kobe U.)联合)得到了最高权值表示的特征公式。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SHINODA, Ken-ichi (with N. Saito): "Character sums attached to finite reductive groups"Tokyo J. Math.. 23. 373-385 (2000)
筱田健一(与 N. Saito):“附加到有限还原群的字符和”Tokyo J. Math.. 23. 373-385 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
NAKASHIMA, Toshiki: "Irreducible Modules of Finite Dimensional Quantum Algebras of type A at roots of unity"Journal of Mathematical Physics. (to appear).
NAKASHIMA, Toshiki:“单位根处 A 型有限维量子代数的不可约模”数学物理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Saito: "Some character sums and Gauss sums over G_2(q)"Tokyo J. of Mathematics. 24-1. 277-289 (2001)
N. Saito:“G_2(q) 上的一些字符和和高斯和”Tokyo J. of Mathematics。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Saito: "Character sums attached to finite reductive groups"Tokyo J.Math.. 23. 373-385 (2000)
N.Saito:“附加到有限还原群的字符和”Tokyo J.Math.. 23. 373-385 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakashima: "Polytopes for Crystallized Demagure Modules and Extremal Vectors"Communications in Algebra. (to appear).
T.Nakashima:“结晶变形模块和极值向量的多面体”代数通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHINODA Ken-ichi其他文献

SHINODA Ken-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHINODA Ken-ichi', 18)}}的其他基金

Developing methods for analysis of ancient pathogens using next-generation sequencing
使用下一代测序开发分析古代病原体的方法
  • 批准号:
    15K14615
  • 财政年份:
    2015
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of the relationship between Jomon and immigrant Yayoi people using whole genome sequencing data
利用全基因组测序数据分析绳文人和移民弥生人的关系
  • 批准号:
    25251043
  • 财政年份:
    2013
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of the origin and population history of the modern Ainu through morphological and genetic anaylsis
通过形态和遗传分析阐明现代阿伊努人的起源和人口历史
  • 批准号:
    22370088
  • 财政年份:
    2010
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation of finite groups, character sums, and their applications
有限群、字符和的表示及其应用
  • 批准号:
    21540024
  • 财政年份:
    2009
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationships between the human migration and the cultural changes in ancient Andean society
人类迁徙与古代安第斯社会文化变迁的关系
  • 批准号:
    19405016
  • 财政年份:
    2007
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representations of finite reductive groups and applications
有限约简群的表示及应用
  • 批准号:
    18540047
  • 财政年份:
    2006
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on the zeta functions attached with the irreducible representations of finite reductive groups
有限约简群不可约表示的zeta函数研究
  • 批准号:
    14540042
  • 财政年份:
    2002
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the phylogenetic relationships between the omon and Yayoi poputations through mitochondrial DNA sequence
通过线粒体DNA序列分析大蒙族和弥生族群的系统发育关系
  • 批准号:
    11640709
  • 财政年份:
    1999
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Representations of Finite Groups and Applications
有限群表示及其应用研究
  • 批准号:
    09640063
  • 财政年份:
    1997
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了