A Study on the zeta functions attached with the irreducible representations of finite reductive groups

有限约简群不可约表示的zeta函数研究

基本信息

  • 批准号:
    14540042
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

1. Zeta functions and functional equations associated with them for representations of a finite group G were first discussed by T.A.Springer (1971) and I.G.Macdonald (1985). We showed first that these functional equations also hold for the irreducible representations of Hecke algebra H which is an endomorphism algebra of an induced representation with multiplicity free.Then we studied the explicit examples and applications ((1)(2) joint work with C.W.Curtis). The results are as follows :(1) It can be shown that if G is a finite reductive group and if His an endomorphism algebra of Gelfand-Graev representation, the epsilon factor which appears in the functional equation is exactly the Gauss sum studied by Saito-Shinoda. Using this fact we obtained an explicit expression of the Fourier transform of e, which is the identity of Hin the case of general linear groups.(2) We showed that in the case of GL(n,q), values of irreducible representations of H on a standard basis element, which corresponds to a Coxeter element, become generalized Kloosterman sums. This implies that there should exist a close relation a between Davenport-Hasse type equations of Kloosterman sums and the norm maps of Hecke algebras.(3) In case of GL(4,q) we obtained almost all values of irreducibles representations of H on standard basis elements. They can be called as Kloosterman sums of higher degree.2. We also studied this project from relating fields.(1) Gomi and Shinoda generalized a result of J.McKay (1999) on coinvariant algebras of finite linear groups (joint with I.Nakamura).(2) Yokonuma studied discrete sets and associated dynamical systems in view of symmetry with a non-commutative setting. Nakashima and Koga studied from the view of quantum groups ; particularly Nakashima studied geometric crystals on Schubert varieties.(3) Wada, Tsunogai and Tsuzuki respectively studied this project in view from the number theory.
1. Zeta函数和与之相关的表示有限群G的泛函数方程是由T.A.Springer(1971)和i.g.m ndonald(1985)首先讨论的。我们首先证明了这些泛函方程也适用于Hecke代数H的不可约表示,Hecke代数H是一个无多重性诱导表示的自同态代数。然后,我们研究了显式实例及其应用((1)和(2)与C.W.Curtis的联合工作)。结果表明:(1)如果G是有限约化群,如果G是Gelfand-Graev表示的自同态代数,则出现在泛函方程中的ε因子正是Saito-Shinoda研究的高斯和。利用这个事实,我们得到了e的傅里叶变换的显式表达式,它是一般线性群的恒等式。(2)在GL(n,q)的情况下,与Coxeter元对应的标准基元上H的不可约表示的值成为广义Kloosterman和。这意味着Kloosterman和的Davenport-Hasse型方程与Hecke代数的范数映射之间存在着密切的关系。(3)在GL(4,q)的情况下,我们得到了H在标准基元上的不可约表示的几乎所有值。它们可以称为更高次的Kloosterman和。我们也从相关领域研究了这个项目。(1) Gomi和Shinoda推广了J.McKay(1999)关于有限线性群的协不变代数的结果(与i.m akamura联合)。(2) Yokonuma从非交换集对称性的角度研究了离散集和相关动力系统。Nakashima和Koga从量子群的角度进行研究;特别是Nakashima研究了舒伯特品种的几何晶体。(3) Wada、Tsunogai和Tsuzuki分别从数论的角度研究了这个项目。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representations of the Hecke algebra for GL_4 (q)
GL_4 (q) 的 Hecke 代数表示
T.Nakashima: "Extremal projectors of q-boson algebras"Comm. in Mathematical Physics. 244. 285-296 (2004)
T.Nakashima:“q-玻色子代数的极值投影”Comm。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Zeta functions and functional equations associated with the components of the Gelfand-Graev representations of a finite reductive group
与有限约简群的 Gelfand-Graev 表示的分量相关的 Zeta 函数和函数方程
Automorphic Green functions associated with the secondary spherical functions.
与二次球函数相关的自同构格林函数。
Geometric Crystals on Schubert Varieties
舒伯特品种中的几何晶体
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHINODA Ken-ichi其他文献

SHINODA Ken-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHINODA Ken-ichi', 18)}}的其他基金

Developing methods for analysis of ancient pathogens using next-generation sequencing
使用下一代测序开发分析古代病原体的方法
  • 批准号:
    15K14615
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of the relationship between Jomon and immigrant Yayoi people using whole genome sequencing data
利用全基因组测序数据分析绳文人和移民弥生人的关系
  • 批准号:
    25251043
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of the origin and population history of the modern Ainu through morphological and genetic anaylsis
通过形态和遗传分析阐明现代阿伊努人的起源和人口历史
  • 批准号:
    22370088
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation of finite groups, character sums, and their applications
有限群、字符和的表示及其应用
  • 批准号:
    21540024
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationships between the human migration and the cultural changes in ancient Andean society
人类迁徙与古代安第斯社会文化变迁的关系
  • 批准号:
    19405016
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representations of finite reductive groups and applications
有限约简群的表示及应用
  • 批准号:
    18540047
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on representations of algebraic groups and finite groups, and applications
代数群和有限群的表示研究及应用
  • 批准号:
    12640040
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the phylogenetic relationships between the omon and Yayoi poputations through mitochondrial DNA sequence
通过线粒体DNA序列分析大蒙族和弥生族群的系统发育关系
  • 批准号:
    11640709
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Representations of Finite Groups and Applications
有限群表示及其应用研究
  • 批准号:
    09640063
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了