A Study on the zeta functions attached with the irreducible representations of finite reductive groups
有限约简群不可约表示的zeta函数研究
基本信息
- 批准号:14540042
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Zeta functions and functional equations associated with them for representations of a finite group G were first discussed by T.A.Springer (1971) and I.G.Macdonald (1985). We showed first that these functional equations also hold for the irreducible representations of Hecke algebra H which is an endomorphism algebra of an induced representation with multiplicity free.Then we studied the explicit examples and applications ((1)(2) joint work with C.W.Curtis). The results are as follows :(1) It can be shown that if G is a finite reductive group and if His an endomorphism algebra of Gelfand-Graev representation, the epsilon factor which appears in the functional equation is exactly the Gauss sum studied by Saito-Shinoda. Using this fact we obtained an explicit expression of the Fourier transform of e, which is the identity of Hin the case of general linear groups.(2) We showed that in the case of GL(n,q), values of irreducible representations of H on a standard basis element, which corresponds to a Coxeter element, become generalized Kloosterman sums. This implies that there should exist a close relation a between Davenport-Hasse type equations of Kloosterman sums and the norm maps of Hecke algebras.(3) In case of GL(4,q) we obtained almost all values of irreducibles representations of H on standard basis elements. They can be called as Kloosterman sums of higher degree.2. We also studied this project from relating fields.(1) Gomi and Shinoda generalized a result of J.McKay (1999) on coinvariant algebras of finite linear groups (joint with I.Nakamura).(2) Yokonuma studied discrete sets and associated dynamical systems in view of symmetry with a non-commutative setting. Nakashima and Koga studied from the view of quantum groups ; particularly Nakashima studied geometric crystals on Schubert varieties.(3) Wada, Tsunogai and Tsuzuki respectively studied this project in view from the number theory.
1。T.A.Springer(1971)和I.G. Macdonald(1985)首先讨论了与它们相关的ZETA函数和与它们相关的功能方程。我们首先表明,这些功能方程也适用于Hecke代数h的不可约说明,这是诱导表示的内态代数,并自由多样化。结果如下:(1)可以证明,如果G是有限的还原群,并且如果他的内态代数是Gelfand-Graev代表的代数,则功能方程中出现的Epsilon因子完全是由Saito-Shinoda研究的高斯总和。利用这一事实,我们获得了E的傅立叶变换的明确表达,这是一般线性组的情况。(2)我们表明,在GL(N,Q)的情况下,H在标准基础元素上的不可减至表示的值,该标准基元与Coxeter元素相对应,成为通用的Kloosterman总和。这意味着应该存在Kloosterman总和的Davenport-Hasse类型方程与Hecke代数的标准图之间存在密切的关系A。(3)在GL(4,Q)的情况下,我们在标准基础元素上几乎获得了H的Mordreducibles表示的所有值。它们可以称为Kloosterman较高程度的总和2。 (1)Gomi和Shinoda从相关领域研究了该项目。中岛和科加从量子群的角度学习。特别是中岛在舒伯特品种上研究了几何晶体。(3)WADA,Tsunogai和Tsuzuki分别研究了该项目,从数字理论看。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zeta functions and functional equations associated with the components of the Gelfand-Graev representations of a finite reductive group
与有限约简群的 Gelfand-Graev 表示的分量相关的 Zeta 函数和函数方程
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Akira Ishii;Hokuto Uehara;C.W.Curtis
- 通讯作者:C.W.Curtis
T.Nakashima: "Extremal projectors of q-boson algebras"Comm. in Mathematical Physics. 244. 285-296 (2004)
T.Nakashima:“q-玻色子代数的极值投影”Comm。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Representations of the Hecke algebra for GL_4 (q)
GL_4 (q) 的 Hecke 代数表示
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Tsuzuki;M.Tsuzuki;M.Tsuzuki;K.Shinoda
- 通讯作者:K.Shinoda
M.Kaneda: "On certain maximal cyclic modules for the quantized special linear algebras at a root of unity"Pacific J. of Math.. 211-2. 273-282 (2003)
M.Kaneda:“关于统一根处量化特殊线性代数的某些最大循环模”Pacific J. of Math.. 211-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakashima: "Irreducible modules of finite dimensional quantum algebras of type A at roots of unity"J. of Mathematical Physics. 43. 2000-2014 (2002)
T.Nakashima:“单位根处 A 型有限维量子代数的不可约模”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHINODA Ken-ichi其他文献
SHINODA Ken-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHINODA Ken-ichi', 18)}}的其他基金
Developing methods for analysis of ancient pathogens using next-generation sequencing
使用下一代测序开发分析古代病原体的方法
- 批准号:
15K14615 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of the relationship between Jomon and immigrant Yayoi people using whole genome sequencing data
利用全基因组测序数据分析绳文人和移民弥生人的关系
- 批准号:
25251043 - 财政年份:2013
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Clarification of the origin and population history of the modern Ainu through morphological and genetic anaylsis
通过形态和遗传分析阐明现代阿伊努人的起源和人口历史
- 批准号:
22370088 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation of finite groups, character sums, and their applications
有限群、字符和的表示及其应用
- 批准号:
21540024 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relationships between the human migration and the cultural changes in ancient Andean society
人类迁徙与古代安第斯社会文化变迁的关系
- 批准号:
19405016 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representations of finite reductive groups and applications
有限约简群的表示及应用
- 批准号:
18540047 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on representations of algebraic groups and finite groups, and applications
代数群和有限群的表示研究及应用
- 批准号:
12640040 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the phylogenetic relationships between the omon and Yayoi poputations through mitochondrial DNA sequence
通过线粒体DNA序列分析大蒙族和弥生族群的系统发育关系
- 批准号:
11640709 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Representations of Finite Groups and Applications
有限群表示及其应用研究
- 批准号:
09640063 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A Research on the Modular Party Algebra
模方代数的研究
- 批准号:
18540042 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
- 批准号:
18540184 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on geometry and various invariants of symplectic space
几何和辛空间的各种不变量的研究
- 批准号:
17540095 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solution of Broue's conjecture in representation theory of finite groups
有限群表示论中布劳猜想的解
- 批准号:
17540010 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory and measure theory of infinite-dimensional groups and related topics
无限维群的表示论和测度论及相关话题
- 批准号:
16540162 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)