The structure and the bifurcation of low dimensional non-linear dynamical systems.
低维非线性动力系统的结构和分岔。
基本信息
- 批准号:09640083
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to investigate the structure and the bifurcation of discrete non-linear dynamical systems, the main purpose we have in this research is to analyze the basic properties of the Henon map which is the simplest model of non-linear dynamical systems.When the Jacobian is equal to zero, the Henon map is the standard family of quadratic polynomials. Therefore, the analysis of the properties of 1-dimensional maps is very important for the study of the bifurcation structure of the Henon map and Henon like maps. In the research until the last year, we analysed the bifurcaion of 1-parameter families of general C^<> unimodal maps by a topological approach, and succeeded to prove that it was the same as that of the standard family of quadratic polynomials. By applying the similar method, we can define periodic point components for 2-parameter families of more general horseshoe like maps, and can prove a quite natural sufficient condition for symbolic sequences which represents how the 1-dim … More ensional parts and the hyperbolic parts are connected.R.Ghrist have proved that there existed a polynomial automorphism of degree 4 on R^2 whose suspension flow was universal, namely, it contains all link types as its periodic orbits. By making the similar consideration on the 3-parameter family of this polynomial automorphism of degree 4, we can give a certain conjugacy relation for all braids. Although this relation is not a necessary condition for the conjugacy, it has an advantage that it can be calculated easily from the data of symbolic sequences. It is a future question whether this method has a good application to the knot theory.For area preserving Henon map, a certain relation between KAM theoretic bifurcation and 2-symbol full shift is expected, and it is an interesting question how invariant circles and periodic points arising from KAM theoritic bifurcaion are embeded in the symbol space. On this problem, we tried several ideas in order to get an appropriate invariant based on numerical data obtained by the Biham-Wenzel method. However, we need more investigation to get a neat mathematical result. Less
为了研究离散非线性动力系统的结构和分支,本文主要研究了非线性动力系统的最简单模型--Henon映射的基本性质,当Jacobian为零时,Henon映射是标准的二次多项式族。因此,分析一维映射的性质对于研究Henon映射和类Henon映射的分支结构是非常重要的。在直到去年的研究中,我们用拓扑方法分析了一般C^<>单峰映射的1-参数族的分支,并成功地证明了它与标准二次多项式族的分支相同.利用类似的方法,我们可以定义更一般的马蹄形映射的2-参数族的周期点分支,并证明了符号序列的一个很自然的充分条件,它表示1-维 ...更多信息 R.Ghrist证明了R^2上存在一个4次多项式自同构,它的悬流是普适的,即它包含所有的链环类型作为它的周期轨道。通过对这种四次多项式自同构的三参数族作类似的考虑,我们可以对所有辫子给出某种共轭关系。虽然这个关系不是共轭性的必要条件,但它的优点是可以很容易地从符号序列的数据中计算出来。对于保面积Henon映射,KAM理论分支与2-符号全移位之间存在一定的关系,以及由KAM理论分支产生的不变圆和周期点如何嵌入符号空间是一个有趣的问题.在这个问题上,我们尝试了几种想法,以得到一个适当的不变量的基础上得到的数值数据的Biham-Wenzel方法。然而,我们需要更多的研究来得到一个简洁的数学结果。少
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masato Tsujii: "Piecewise expanding maps on the plane with singular ergodic properties." Ergodic Th. & Dyn.Sys.(to appear).
Masato Tsujii:“具有奇异遍历特性的平面上的分段扩展地图。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masato Tsujii: "A simple proof for monotonicity of entropy in the quadratic family." Ergodic Th. & Dyn.Sys.(to appear).
Masato Tsujii:“二次族中熵单调性的简单证明。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masato Tsujii: "A simple proof for monotonicity of entropy in the quadratic family." Ergodic Th.& Dyn.Sys.(to appear).
Masato Tsujii:“二次族中熵单调性的简单证明。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masato Tsujii: "Piecewise expanding maps on the plane with singular ergodic properties." Ergodic Th.& Dyn.Sys.(to appear).
Masato Tsujii:“具有奇异遍历特性的平面上的分段扩展地图。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANNAMI Atsuro其他文献
SANNAMI Atsuro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANNAMI Atsuro', 18)}}的其他基金
To what extent can symbolic dynamics represent the structure of non-linear dynamics?
符号动力学在多大程度上可以代表非线性动力学的结构?
- 批准号:
18540200 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Stochastic chaos in random dynamical systems
随机动力系统中的随机混沌
- 批准号:
18K03441 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonintegrability and chaos in general dynamical systems
一般动力系统中的不可积性和混沌
- 批准号:
17J01421 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study of Global Bifurcations of Dynamical Systems for Understandings of Chaos and Systems with Large Degrees of Freedom
研究动力系统的全局分岔以理解混沌和大自由度系统
- 批准号:
17340045 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Verification Methods for Dynamical Systems described by ODEs
常微分方程描述的动力系统数值验证方法
- 批准号:
17540106 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Flow patterns governed by fluid equation in earth sciences-numerical study from view points of dynamical systems-
地球科学中流体方程控制的流动模式-从动力系统的角度进行数值研究-
- 批准号:
16340023 - 财政年份:2004
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of ergodic properties of partially hyperbolic dynamical systems
部分双曲动力系统的遍历特性研究
- 批准号:
14340052 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological and computational methods for chaos and global structure of dynamical systems
动力系统混沌和全局结构的拓扑和计算方法
- 批准号:
14540219 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the emergent mechanism of macroscopic dynamical structure in large dimensional dynamical systems
大维动力系统宏观动力结构涌现机制研究
- 批准号:
13831007 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic Study on Dynamical Systems in Mathematical Biology
数学生物学中动力系统的综合研究
- 批准号:
13304006 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on Dynamical Systems, Chaos and Fractals Modeled by Billiard Systems in Aspect of Global Analysis
全局分析方面台球系统建模的动力系统、混沌和分形研究
- 批准号:
13440056 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)