Fully Integrated Optoelectronic Receiver with Robust PAM-N Data Recovery (FIORD)

具有强大 PAM-N 数据恢复 (FIORD) 功能的全集成光电接收器

基本信息

项目摘要

State-of-the-art silicon photonic transceivers use signal processing at both transmitter and receiver sides mostly performed using off-chip digital signal processors (DSPs). These solutions suffer from communication speeds up to 64 Gbaud, as these are severely limited by interconnect technologies such as bond wires. Next generation opto-electronic systems require at least 2-4x higher data rates per singe wavelength and lane, making such interconnect a fundamental bottleneck for opto-electronic transceivers towards 1-Tbps.The first key innovation of the proposed architectural solution to enable such transmission rates is the adoption of a fully monolithic implementation, where both optical components and electronic Rx and Tx circuits, including the critical clock and data recovery (CDR) together with the required first level digital signal processing units, are embedded on the same silicon substrate. Additional architectural innovations of the monolithically integrated clock and data recovery (CDR) together with a low-phase noise PLL, ensures wideband dynamic phase and frequency tracking of the incoming PAM-N data sets, is of fundamental importance to provide data rates per carrier equal or beyond 224 Gbit/s per wavelength and lane. Thus proposal focuses on various PAM-N, (N=4, 6, 8) modulation schemes to achieve this goal. Obviously, the optimum architectural choice results in a trade-off analysis between noise (SNR), CDR tracking bandwidth and jitter, PAM-N linearity (RLM) and signal bandwidth. In order to guarantee a robust PAM-4 / PAM-6 / PAM-8 CDR operation with superior bit-error rate (BER) and improved energy-efficiency per transmitted bit, the following scientific and technical challenges will be addressed: 1. New phase-locking algorithms suited for high-speed PAM-4 / PAM-6 / PAM-8 signals, eliminating the data dependent jitter 2. Ultra-low phase noise CDR and PLL 3. High-sensitivity wideband TIAs with adequate equalization 4. Highly linear wideband T&Hs and accurate ADCs 5. Traditional phase detectors (PD) such as the Alexander PD (APD), commonly used for NRZ data, lead to an unacceptable amount of data dependent jitter when applied to PAM-N signals, caused by the intermediate signal transitions with different phase delays. This proposal introduces a novel CDR approach, particularly tailored for PAM-N signals and overcoming the mentioned issues. The ultimate objective of this research proposal is to advance state-of-the-art optical Rx architectures by demonstrating a monolithically integrated high-speed low-jitter PAM-N CDR solution for future photonic transceivers. This technology not only enables significant robustness and bit-error rate improvements, but more importantly enables significant data rate up-scaling.
最先进的硅光子收发器在发射器和接收器侧都使用信号处理,主要使用片外数字信号处理器(DSP)执行。这些解决方案受到高达64 Gbaud的通信速度的影响,因为这些速度受到诸如键合线等互连技术的严重限制。下一代光电子系统要求每单波长和通道至少2- 4倍更高的数据速率,使得这种互连成为光电子收发器朝向1-Tbps的基本瓶颈。所提出的实现这种传输速率的架构解决方案的第一个关键创新是采用完全单片实现,其中光学组件和电子Rx和Tx电路,包括关键时钟和数据恢复(CDR)以及所需的第一级数字信号处理单元,都嵌入在同一硅衬底上。单片集成时钟和数据恢复(CDR)以及低相位噪声PLL的其他架构创新确保了对输入PAM-N数据集的宽带动态相位和频率跟踪,对于提供等于或超过每个波长和通道224 Gbit/s的每个载波数据速率至关重要。因此,提案重点关注各种PAM-N(N=4、6、8)调制方案来实现这一目标。显然,最佳架构选择会导致噪声(SNR)、CDR跟踪带宽和抖动、PAM-N线性度(RLM)和信号带宽之间的权衡分析。为了保证稳健的PAM-4 / PAM-6 / PAM-8 CDR操作具有上级误码率(BER)和改进的每个传输比特的能量效率,将解决以下科学和技术挑战:新的锁相算法适用于高速PAM-4 / PAM-6 / PAM-8信号,消除数据相关抖动2.超低相位噪声CDR和PLL 3.具有足够均衡的高灵敏度宽带TIA 4.高线性宽带T& H和精确ADC 5.通常用于NRZ数据的传统相位检测器(PD)(例如,亚历山大PD(APD))在应用于PAM-N信号时导致不可接受量的数据相关抖动,这是由具有不同相位延迟的中间信号转变引起的。该提案引入了一种新颖的CDR方法,特别是针对PAM-N信号定制的,并且克服了所提到的问题。该研究提案的最终目标是通过展示用于未来光子收发器的单片集成高速低抖动PAM-N CDR解决方案,推进最先进的光Rx架构。该技术不仅能够显著提高鲁棒性和误码率,而且更重要的是能够显著提升数据速率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Friedel Gerfers其他文献

Professor Dr.-Ing. Friedel Gerfers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Friedel Gerfers', 18)}}的其他基金

Highly-scalable (hybrid-) beam-forming RF-receiver architecture
高度可扩展(混合)波束形成射频接收器架构
  • 批准号:
    397976366
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Digital High-Linear Closed-Loop CMOS Transmitter with Highest Energy Efficiency for Future Mobile Radio Generations (DigiMOST)
适用于未来移动无线电世代的具有最高能效的数字高线性闭环 CMOS 发射机 (DigiMOST)
  • 批准号:
    504495555
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra-wideband highly linear Sampler and Analog-to-Digital Converter – DISCO
超宽带高线性采样器和模数转换器 – DISCO
  • 批准号:
    509466514
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra Low-Power Broadband Voltage-mode VCSEL Transmit System - VOLTA
超低功耗宽带电压模式 VCSEL 发射系统 - VOLTA
  • 批准号:
    521607727
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Q-Pods - Holistically Packaged Integrated Optoelectronic Devices for Quantum Systems
Q-Pods - 用于量子系统的整体封装集成光电器件
  • 批准号:
    10032009
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Integrated glove box system for optoelectronic thin films
用于光电薄膜的集成手套箱系统
  • 批准号:
    465013551
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Subcellular interrogation of muscle dynamics with integrated optoelectronic arrays
利用集成光电阵列对肌肉动力学进行亚细胞询问
  • 批准号:
    2055457
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
  • 批准号:
    2011996
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrated Colloidal Quantum Dot (QD) smart optoelectronic devices for the Internet of Things (IoT)
用于物联网 (IoT) 的集成胶体量子点 (QD) 智能光电器件
  • 批准号:
    2433330
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
  • 批准号:
    2011603
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Integrated X-ray Ptychography and Optical Luminescence to Understand the Interplay between Local Structural Dynamics and Optoelectronic States
职业:集成 X 射线叠层成像和光学发光以了解局部结构动力学和光电态之间的相互作用
  • 批准号:
    1848371
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Optoelectronic modules and integrated optics for investigation into diode area melting as a potentially scalable high-speed, highly flexible...
光电模块和集成光学器件,用于研究二极管区域熔化作为潜在可扩展的高速、高度灵活的...
  • 批准号:
    1908510
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Integrated optoelectronic devices and compensation algorithms
集成光电器件和补偿算法
  • 批准号:
    486716-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
  • 批准号:
    1610333
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了