Hyper Kahler manifolds
超卡勒流形
基本信息
- 批准号:11640076
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a compact Riemannian manifold with vanishing Ricci curvature. Then the list of holonomy group of X includes four interesting classes of the holonomy groups: SU(n), Sp(m), G_2 and Spin(7). The Lie group SU(n) arises as the holonomy group of Calabi-Yau manifolds and Sp(m) is the holonomy group of hyper Kahler manifolds. G_2 and Spin(7) occur as the holonomy groups of 7 and 8 dimensional manifolds respectively. There are many intriguing common properties between these four geometries. The author's research is based on the study of hyper Kahler manifolds, from which he obtains some ideas with the potential to unify moduli spaces results of these different kinds of geometric structures. His main results are the followings:(1) One of the most remarkable common property is smoothness of the deformation spaces of these geometric structures. The author show that these deformations can be regarded as deformations of special kind of differential forms and he constructs a new kind of deformations theory of these differential forms. Then an obstruction of the deformation is given by the certain exact forms. Hence he shows that the obstruction vanishes in terms of cohomological (topological) argument. This result can be considered as a natural generalization of Kodaira-Spencer theory.(2) He also constructs the moduli space and shows that the local Torelli's type theorem holds in these cases.(3) As an application he obtain the smooth moduli space of Calabi-Yau structures and Special Lagrangian submanifolds.
设X是Ricci曲率为零的紧致黎曼流形. X的完整群列表包括四类有趣的完整群:SU(n),Sp(m),G_2和Spin(7).李群SU(n)是Calabi-Yau流形的完整群,而Sp(m)是超Kahler流形的完整群。G_2和Spin(7)分别作为7维和8维流形的完整群出现。这四种几何之间有许多有趣的共同性质。作者的研究是基于对超Kahler流形的研究,他从中得到了一些想法,这些想法有可能统一这些不同类型的几何结构的模空间结果。主要结果如下:(1)这些几何结构的变形空间的光滑性是它们最显著的共同性质之一。作者证明了这些变形可以看作是一类特殊微分形式的变形,并构造了一类新的微分形式的变形理论。然后通过一定的精确形式给出了变形的一个障碍。因此,他表明,障碍消失方面的上同调(拓扑)的论点。这个结果可以被认为是Kodaira-Spencer理论的自然推广。(2)他还构造了模空间,并表明当地Torelli的类型定理在这些情况下举行。(3)作为应用,得到了Calabi-Yau结构的光滑模空间和特殊Lagrange子流形。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
藤木明: "Compact Self-dual manifolds with torus Actions"to appear in Journal of Differenal Geometry.
Akira Fujiki:“带有环面作用的紧致自对偶流形”将发表在《微分几何杂志》上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
並河良典: "Extension of 2-forms and Symplector Varieties"J.Reine.Angew.Math. 539. 123-147 (2001)
Yoshinori Namikawa:“2 型和辛向量的扩展”J.Reine.Angew.Math 539. 123-147 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
満渕俊樹: "Vector field energies and critical metrics on Kahler mtds"Nagoya Math.J. 162. 41-63 (2001)
Toshiki Mitsubuchi:“卡勒 mtds 的矢量场能量和关键度量”Nagoya Math.J. 162. 41-63 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Mabuchi: "Vector field energies and Critical metrics on Kahler manifolds"Nagoya Math. J.. 162. 41-63 (2001)
T. Mabuchi:“卡勒流形上的矢量场能量和临界度量”名古屋数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
満渕俊樹: "kahler-Einstein metrics for manifolds with non- Vanishing Futaki characters"to appear in Tohoku math J.
Toshiki Mitsubuchi:“具有非消失二木特征的流形的卡勒-爱因斯坦度量”出现在东北数学杂志上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GOTO Ryushi其他文献
GOTO Ryushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GOTO Ryushi', 18)}}的其他基金
Geometric structures defined by differential forms (Calabi-Yau structures, generalized Kaeher structures)
由微分形式定义的几何结构(Calabi-Yau 结构、广义 Kaeher 结构)
- 批准号:
22540082 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometrtic structures defined by differential forms (Topological Calibrations)
由微分形式定义的几何结构(拓扑校准)
- 批准号:
19540079 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unified approach of Ricci-flat manifolds
Ricci平坦流形的统一方法
- 批准号:
15540070 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Mathematics on Calabi-Yau manifolds and related topics
Calabi-Yau 流形数学及相关主题
- 批准号:
20K03530 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Complex Monge-Ampère equations and Calabi-Yau manifolds with singularities
复杂的 Monge-Ampère 方程和具有奇点的 Calabi-Yau 流形
- 批准号:
2260081 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds: Families, Fibrations, and Degenerations
卡拉比-丘流形:族、纤维化和退化
- 批准号:
2299824 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Calculation of Gross-Siebert mirror rings for log Calabi-Yau manifolds.
对数 Calabi-Yau 流形的 Gross-Siebert 镜环的计算。
- 批准号:
2279765 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Studentship














{{item.name}}会员




