Research of non-integrable systems by means of bilinear method
双线性法研究不可积系统
基本信息
- 批准号:11640121
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the discretization of differential equations to obtain the information of transformation between non-integrable differential equations and their bilinear forms. To this end, we completed the REDUCE program for finding analytic form of conserved densities of diference-difference equations. By using the program, we studied the stability of the model equation which has modified Bessel type potential, and confirm there exists nearly stable solitary wave solutions. The explicit bilinear form and the transformation of the model equation are now searching. In connection with conserved density of difference equations, we clarified the relation between the shift operator and the discrete Euler operator. Furthermore, a new approach for the study of the integrability of differential-difference systems is introduced. Each investigators of our research group achieved many accomplishment in their fields, and contributed to the progress of the present work.
研究了微分方程的离散化问题,得到了不可积微分方程与其双线性形式之间的转换信息。为此,我们完成了求解差分方程守恒密度解析形式的REDUCE程序。利用该程序研究了具有修正Bessel型势的模型方程的稳定性,证实了存在近稳定孤波解。模型方程的显式双线性形式和变换正在研究中。结合差分方程的守恒密度,阐明了移位算子与离散欧拉算子之间的关系。此外,还介绍了一种研究微分-差分系统可积性的新方法。本课题组的每一位研究者都在各自的领域取得了许多成就,为本课题的研究做出了贡献。
项目成果
期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Shiba: "Analytic continuation beyond the ideal boundary"Kokyuroku,Res.Inst.Math.sci.,Kyoto Univ.. 1155. 120-127 (2000)
M.Shiba:“超越理想边界的解析延续”Kokyuroku,Res.Inst.Math.sci.,京都大学. 1155. 120-127 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shiba: "Ideal fluid flows on a noncompact Riemann surface and analytic continuation beyond the ideal boundary"Proc.the fourth Japan-Korea Workshop. 34-39 (2001)
M.Shiba:“非紧黎曼曲面上的理想流体流动和理想边界之外的解析延拓”,第四届日韩研讨会论文。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.J.Ablowitz: "On Integrability and Chaos in Discrete Systems"Chaos, Solitons and Fractals. 11, No.1-3. 159-169 (2000)
M.J.Ablowitz:“论离散系统中的可积性和混沌”混沌、孤子和分形。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shiba: "Analytic continuation beyond the ideal boundary"Real and Complex Analysis, Proc.the third Japan-Korea Workshop, Ewha Womans University, Seoul, Korea (ed.by S.Y.Lee). 26-35 (2000)
M.Shiba:“超越理想边界的分析延续”实数与复杂分析,第三届日韩研讨会,梨花女子大学,韩国首尔(S.Y.Lee 编辑)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Willox: "Quadrilateral Lattices and Eigenfunction Potentials for N-component KP Hierarchies"Phys.Lett.A. 252. 163-172 (1999)
R.Willox:“N 分量 KP 层次结构的四边形格子和特征函数势”Phys.Lett.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITO Masaaki其他文献
ITO Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITO Masaaki', 18)}}的其他基金
Construction of a base for utilization of insect cell-free protein synthesis system
昆虫无细胞蛋白合成系统利用基地的建设
- 批准号:
24580083 - 财政年份:2012
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on conserved quantity and integrability for discrete and ultradiscrete systems
离散和超离散系统守恒量和可积性研究
- 批准号:
23560070 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An improvement of insect cell-free protein synthesis system
昆虫无细胞蛋白质合成系统的改进
- 批准号:
21580069 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel molecular mechanisms for cardiotonic action, their involvement in diseases and application for treatment
强心作用的新分子机制、其与疾病的关系及其治疗应用
- 批准号:
19390211 - 财政年份:2007
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CRP as a biomediator of atherosclerosis and its intracellular signaling
CRP作为动脉粥样硬化的生物介质及其细胞内信号传导
- 批准号:
17590725 - 财政年份:2005
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of Rho-kinase signaling in heart and its involvement of cardiac diseases
Rho激酶信号在心脏中的作用及其与心脏病的关系
- 批准号:
14370223 - 财政年份:2002
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Signal Transduction in the Regulation of Vascular Tone and Their Involvement in Diseases
血管张力调节中的新信号转导及其与疾病的关系
- 批准号:
11694261 - 财政年份:1999
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of stretch on cell proliferattion of fibroblast and collagen metabolism
拉伸对成纤维细胞增殖和胶原代谢的影响
- 批准号:
10670782 - 财政年份:1998
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the Relationship between Invasion of Fungi and Alteration of Cell Kinetics in Hair Apparatus in Experimental Dermatophytosis, Especially in Comparison with Human Hair Fungal Infection
实验性皮肤癣菌病中真菌侵袭与毛发装置细胞动力学改变之间关系的研究,特别是与人类毛发真菌感染的比较
- 批准号:
07670933 - 财政年份:1995
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cyclic nucleotide phosphodiesterase in human cardiovascular tissues
人体心血管组织中的环核苷酸磷酸二酯酶
- 批准号:
06670710 - 财政年份:1994
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Exact solutions to non-integrable systems and experimental construction of chaotic sets
不可积系统的精确解和混沌集的实验构造
- 批准号:
18K03418 - 财政年份:2018
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wave Statistics in Non-Integrable Systems: From Nanostructures to Ocean Waves
不可积系统中的波浪统计:从纳米结构到海浪
- 批准号:
1205788 - 财政年份:2012
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
Geometry of statistical manifolds for integrable and non-integrable systems
可积和不可积系统的统计流形的几何
- 批准号:
23740047 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The construction of infinite dimensional singularity theory of completely non-integrable systems and its applications to the singular motion-planning problem
完全不可积系统无限维奇点理论的构建及其在奇异运动规划问题中的应用
- 批准号:
23654058 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis for integrable cellular automata by ultradiscretization method and its applications to non-integrable systems
可积元胞自动机的超离散化分析及其在不可积系统中的应用
- 批准号:
21760063 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Exact Solutions in Low-Dimensional Problems and Their Application to Non-Integrable Systems
低维问题的精确解及其在不可积系统中的应用
- 批准号:
07640514 - 财政年份:1995
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)