Mathematical analysis for nonlinear partial differential equations with singular solutions
具有奇异解的非线性偏微分方程的数学分析
基本信息
- 批准号:15340041
- 负责人:
- 金额:$ 7.04万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research was to solve nonlinear Partial Differential Equations whose solution is expected to have singularities depending on time. The candidates of singularities are defects in harmonic mapping, vortex in Ginzburg-Landau problem and free boundaries.We have solved the following problems;(1)On a Soap film vibration with free boundary, we have established the method to treat wave type free boundary problems(2)We developed a numerical method via the discrete Mores flow for volume constraint conditions(3)We constructed a weak solution to a hyperbolic equation with volume constraint(4)We constructed a weak solution to a parabolic equation with volume constraint and showing Hoelder continuity of thesolutionMoreover we have developed solvers for parallel machine with minimizing algorithm via the discrete Morese flows. This works very well especially for volume constraint problems. This is also very nice for a weak connected parallel machines, because it uses direct method of variational principle.Finally, we would like to express pur special thanks to all participants of this project.
本研究的目的是求解非线性偏微分方程,其解随时间具有奇异性。奇异点的候选点是谐波映射中的缺陷、金兹堡-朗道问题中的涡旋和自由边界。我们解决了以下问题:(1)在具有自由边界的皂膜振动中,我们已经建立了处理波浪型自由边界问题的方法(2)我们开发了一种数值方法,通过离散Mores流对体积约束条件(3)我们构造了一个带体积约束的双曲方程的弱解(4)我们构造了一个带体积约束的抛物方程的弱解,并显示了解的Hoelder连续性。此外,我们开发了求解并行机的最小化算法,通过离散Morese流。这非常适用于体积约束问题。这对于弱连接并联机器来说也是非常好的,因为它使用了变分原理的直接方法。最后,我们要特别感谢所有参与这个项目的人。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Omata: "A numerical treatment of thin film motion with free boundary"Adv.Math.Sci.Appl., 14,. 14(to appear). (2004)
S.Omata:“自由边界薄膜运动的数值处理”Adv.Math.Sci.Appl.,14,。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A numerical computation to the American option pricing via the discrete Morse flow
基于离散莫尔斯流的美式期权定价数值计算
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:U.C.Ji;N.Obata;N.Obata;S.Omata et.el.
- 通讯作者:S.Omata et.el.
Bubble Motion on water surface
水面上的气泡运动
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Yamazaki;S.Omata et.el.
- 通讯作者:S.Omata et.el.
Numericalsolution of film vibration with obstacle
有障碍薄膜振动的数值求解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Yoshiuchi;S.Omata;K.Svadlenka;K.Ohara
- 通讯作者:K.Ohara
S.Jimbo, J.Zhai: "Instability in a geometric parabolic equation on convex domain"J.Differential equations. 188. 447-460 (2003)
S.Jimbo,J.Zhai:“凸域上几何抛物线方程的不稳定性”J.微分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OMATA Seiro其他文献
OMATA Seiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OMATA Seiro', 18)}}的其他基金
Geometric measure theory and hyperbolic operators ant its numerical calculations
几何测度论与双曲算子及其数值计算
- 批准号:
24654020 - 财政年份:2012
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Variational approach to collision, detachment and adhesion
碰撞、分离和粘附的变分方法
- 批准号:
23340024 - 财政年份:2011
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New topics for partial differential equations whose solution has singular sets
解具有奇异集的偏微分方程的新主题
- 批准号:
18340047 - 财政年份:2006
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
- 批准号:
11640159 - 财政年份:1999
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 7.04万 - 项目类别:
Research Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
- 批准号:
RGPIN-2021-02600 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
- 批准号:
RGPIN-2021-02600 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
- 批准号:
DGECR-2021-00065 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Launch Supplement
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2020
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2019
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 7.04万 - 项目类别:
Continuing Grant
Stability of deterministic and stochastic nonlinear PDEs of parabolic type with degeneracies
具有简并性的抛物线型确定性和随机非线性偏微分方程的稳定性
- 批准号:
334362478 - 财政年份:2017
- 资助金额:
$ 7.04万 - 项目类别:
Research Grants