Variational approach to collision, detachment and adhesion
碰撞、分离和粘附的变分方法
基本信息
- 批准号:23340024
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A global model for impact of elastic shells and its numerical implementation
弹性壳冲击的全局模型及其数值实现
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Masaki Kazama;Seiro Omata;Takeyuki Nagasawa;Akira Kikuta;Karel Svadlenka
- 通讯作者:Karel Svadlenka
Chaotic motion of propagating pulses in the Gray-Scott model
格雷-斯科特模型中传播脉冲的混沌运动
- DOI:10.1103/physreve.83.056207
- 发表时间:2011
- 期刊:
- 影响因子:2.4
- 作者:M. Yadome;K. Ueda;M. Nagayama
- 通讯作者:M. Nagayama
Mathematical modeling and numerical treatment of adhesion, exfoliation and collision
粘附、剥落和碰撞的数学建模和数值处理
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:風間正喜;諏訪多聞;小俣正朗;A. Mitsuishi and T. Yamaguchi;Norio Iwase;Akio Kawauchi;A. Mitsuishi and T. Yamaguchi;S.Omata
- 通讯作者:S.Omata
粘着と剥離の数理モデルについて
关于粘附和剥离的数学模型
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:風間正喜;諏訪多聞;小俣正朗;A. Mitsuishi and T. Yamaguchi;Norio Iwase;Akio Kawauchi;A. Mitsuishi and T. Yamaguchi;S.Omata;Norio Iwase;Akio Kawauchi;小俣正朗
- 通讯作者:小俣正朗
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OMATA Seiro其他文献
OMATA Seiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OMATA Seiro', 18)}}的其他基金
Geometric measure theory and hyperbolic operators ant its numerical calculations
几何测度论与双曲算子及其数值计算
- 批准号:
24654020 - 财政年份:2012
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
New topics for partial differential equations whose solution has singular sets
解具有奇异集的偏微分方程的新主题
- 批准号:
18340047 - 财政年份:2006
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis for nonlinear partial differential equations with singular solutions
具有奇异解的非线性偏微分方程的数学分析
- 批准号:
15340041 - 财政年份:2003
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
- 批准号:
11640159 - 财政年份:1999
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Kinetics on surface tension with junction
连接处表面张力的动力学
- 批准号:
21K03349 - 财政年份:2021
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on verified numerical computations for nonlinear hyperbolic partial differential equations
非线性双曲偏微分方程数值计算验证研究
- 批准号:
18K13453 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
- 批准号:
18H01126 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on representation for solutions to PDE by elliptic functions and the related problems
椭圆函数偏微分方程解的表示及相关问题的研究
- 批准号:
18K03374 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening of potential analysis on nonsmooth domains - Applications to PDE and ideal boundary
非光滑域势分析的深化——偏微分方程和理想边界的应用
- 批准号:
17H01092 - 财政年份:2017
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (A)