OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS

Banach空间几何算子理论研究及应用

基本信息

  • 批准号:
    11640172
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

Geometric properties of Banach spaces, as well as their related norm inequalities, are investigated from an operator theoretical point of view. This approach enables us to apply interpolation techniques to research on the Banach space geometry. Major results are as follows.1. On Clarkson-type inequalities and Rademacher type-cotype :(1) A sequence of multi-dimensional Clarkson-type inequalities, generalized Clarkson, random Clarkson inequalities and thier variants, are characterized in terms of Rademacher type and cotype. These inequalities are equivalent in a Lebesgue-Bochner space.(2) We extended q-uniform convexity and p-uniform smoothness inequalities in parameters and in number of elements.2. On geometric constants of Banach spaces :(1) We clarified some relations between the von Neumann-Jordan (NJ-) constant and James constant, resp., the normal structure coefficient. In particular, if X has the NJ-constant less than 5/4, then X, as well as the dual space X^*, has the uniform normal structure and hence the fixed point property. An answer was also presented to the question of Gao and Lau concerning James constant.(2) We determined the NJ-and James constants of 2-dimensional Lorentz sequence spaces d (w, q).(3) The supremum of p, 1【less than or equal】p【less than or equal】, for which a subspace X of L_1 is that of L_p was determined by the NJ-constant of X.3. Out absolute norms :(1) The NJ-constant of absolute normalized norms on C^2 was determined and estimated. Also we showed that all these norms are uniformly non-square except the l_1-and l_∞-norms.(2) The correspondence between the absolute normalized norms on C^2 and the convex functions ψon [0, 1] with certain conditions was extended to the n-dimensional case.(3) By using absolute norms we introduced the notion of ψ-direct sum of a finite number of Banach spaces, and extended the well-known facts for the l_p-sums of Banach spaces concerning strict resp. uniform convexity.
从操作员的理论角度研究了Banach空间的几何特性及其相关规范的不平等。这种方法使我们能够应用插值技术来研究Banach空间几何形状。主要结果如下1。在克拉克森类型的不等式和Rademacher Type-cotype上:(1)多维克拉克森型不平等的序列,普遍的克拉克森,随机的克拉克森不等式和THIER变体,以Rademacher类型和Cotype为特征。这些不等式在Lebesgue-Bochner空间中是等效的。(2)我们扩展了参数和元素数量的Q-均匀的凸度和P-均匀的平滑度不等式。2。在Banach空间的几何常数上:(1)我们阐明了冯·诺伊曼 - 约旦(NJ-)常数与詹姆斯恒定的某些关系,正常结构系数。特别是,如果X的NJ构恒定小于5/4,则X以及双空间X^*具有统一的正常结构,因此具有固定点特性。 (2)我们确定了二维Lorentz序列空间D(W,Q)的NJ和James Stonstant的答案。 X.3的NJ-COSTANT。绝对规范:(1)确定并估算了C^2上绝对归一化规范的NJ恒定体。我们还表明,所有这些规范除了L_1和L_∞-NORMS外,所有这些规范都是统一的。(2)C^2上的绝对归一化规范与凸函数ψon[0,1]之间的对应关系扩展到n维情况。对于Banach空间的L_P-sums,涉及严格的resp。均匀的凸度。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takayuki KOBAYASHI: "On global motion of a compressible viscous fluid with boundary slip condition"Applicationes Mathematicae. 26・2. 159-194 (1999)
Takayuki KOBAYASHI:“关于边界滑移条件下的可压缩粘性流体的整体运动”应用数学 26・2(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuji TAKAHASHI: "On James and Schaffer constants for Banach spaces"RIMS Kokyuroku (Kyoto University). 1186. 189-193 (2001)
Yasuji TAKAHASHI:“关于 Banach 空间的 James 和 Schaffer 常数”RIMS Kokyuroku(京都大学)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikio Kato: "On James, Jordan-von Neumann constants for Lorentz sequence spaces"Journal of Mathematical Analysis and Applications. (発表予定).
加藤干雄:“关于洛伦兹序列空间的詹姆斯、乔丹-冯·诺依曼常数”《数学分析与应用杂志》(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikio KATO: "On absolute morms on C^2-the geometric aspect"京都大学数理解析研究所講究録. (発表予定).
加藤干雄:“关于 C^2 的绝对 morms - 几何方面”,京都大学数学科学研究所 Kokyuroku(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuji Takahashi: "Some convexity constants related to Hlawka type inequalities in Banach spaces"Journal of Inequalities and Applications. (発表予定).
Yasuji Takahashi:“与 Banach 空间中的 Hlawka 型不等式相关的一些凸性常数”《不等式与应用杂志》(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Mikio其他文献

KATO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Mikio', 18)}}的其他基金

Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
  • 批准号:
    23540216
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
  • 批准号:
    20540179
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS
Banach几何结构与函数空间及ψ-直和的研究
  • 批准号:
    18540185
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
  • 批准号:
    16540163
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS
Banach几何结构与函数空间的研究及应用
  • 批准号:
    14540181
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    09640203
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
  • 批准号:
    09672131
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
  • 批准号:
    63570755
  • 财政年份:
    1988
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Geometric constants of Banach Spaces and their applications
Banach空间的几何常数及其应用
  • 批准号:
    17K05287
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric constants and norm inequalities in Banach spaces and their applications
Banach空间中几何常数和范数不等式的研究及其应用
  • 批准号:
    19540196
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The form of unit balls and the constants of Banach spaces and their applications
单位球的形式和Banach空间常数及其应用
  • 批准号:
    18540164
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The norm structure of Banach spaces and its application.
Banach空间的范数结构及其应用。
  • 批准号:
    14540160
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了