RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS

Banach几何结构与函数空间及ψ-直和的研究

基本信息

  • 批准号:
    18540185
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Geometric structures of Banach and function spaces and also ψ-direct sums of Banach spaces are investigated. Major results are as follows.(1)A sharp triangle inequality and its reverse inequality with n elements were obtained, where some conditions for equality attainedness were presented. We used them to investigate the uniform non-l^n_1-ness etc. of Banach spaces. We extended these inequalities and also we had some results on such type inequalities with a parameter.(2)Since it was introduced by the author etc. in 2002, the-ψ-direct sums have been attracting a good deal of attention. In this research project we obtained a sequence of results on the-ψ-direct sums concerning weak nearly uniform smoothness, WORTH property, Schur property, and uniform non-l^n_1-ness etc. As extreme cases some interesting results on l_1 and l_∞-sums are included: In particular we constructed uniformly non-l^3_1 Banach spaces which are not uniformly non-square, but have the fixed point property for non-expansive mappings (resp. but are super-reflexive).(3)We introduced the von Neumann-Jordan type and the James type constants and obtained several results on the uniform non-squareness and uniform normal structure etc. with these constants. Also we obtained some results on the weak modules of nearly uniform smoothness.(4)In July, 2007 the head investigator participated in the International Workshop on Banach space, Operator Theory and Applications to Nonlinear Analysis held in Harbin, China and presented an invited talk and a special lecture for graduate students, where he introduced some recent results on the-ψ-direct sums of Banach spaces. We organized the Second International Symposium on Banach and Function Spaces 2006in September, 2006, Kitakyushu, Japan, and its proceedings Banach and Function Spaces II (pp.467)was published by Yokohama Publishers in 2008.
研究了Banach和功能空间的几何结构,以及Banach空间的ψ-导向总和。主要结果如下。(1)获得了急剧的三角形不平等及其与n个元素的反向不平等,其中提出了一些平等的条件。我们用它们研究了Banach空间的均匀非l^n_1-度等。我们扩大了这些不平等,也有一些与参数的类型不等式的结果。(2)由于作者是由作者引入等。2002年,单次直接款项吸引了很多关注。在该研究项目中,我们获得了一系列关于单艇的成果的顺序,涉及弱几乎均匀的平滑度,价值,schur属性和统一的非l^n_1-度等。作为极端情况,包括在L_1和L_1和L_∞-SUMS上进行一些有趣的结果:包括:特别是我们构建了均匀的非^3_1 Banach空间,但不统一地授权,但不合身,但不合格,但是不合身的,但是不合身的,但是不合身的,但是不合身的,但是不合身的。 (3)我们引入了von Neumann-Jordan类型和James类型常数,并使用这些常数获得了一些关于均匀的非质量和均匀的正常结构等的结果。 (4)2007年7月,我们还获得了一些弱模块。(4)首席调查员参加了关于Banach空间,操作员理论和应用在中国Harbin举行的非线性分析的国际研讨会,并为研究生提供了一场邀请的演讲,并为研究生提供了一些有关Banrach领域的最新成绩。我们组织了2006年9月在日本Kitakyushu的Banach and Function Spaces 2006年的第二次国际研讨会,其会议记录Banach and Function Spaces II(pp.467)于2008年发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Banach and Function spaces II(Proceedings of the Second Interna-tional Symposium on Banach and Function spaces, September 14-17, 2006, Kitakyushu)
Banach 和函数空间 II(第二届 Banach 和函数空间国际研讨会论文集,2006 年 9 月 14-17 日,北九州)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kato;L. Maligranda;(Editors)
  • 通讯作者:
    (Editors)
Uniform non-1^n_1-ness of I_1-sums of Banach spaces
Banach 空间 I_1-和的一致非 1^n_1-ness
三角不等式の精密化とその応用
三角不等式的精化及其应用
Some recent results on direct sums of Banach spaces(Invited Lecture)
Banach空间直和的一些最新结果(特邀报告)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takayuki;Tamura;Mikio Kato
  • 通讯作者:
    Mikio Kato
Refinement of the triangle ineqaulity and its application
三角不等式的精化及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Mikio其他文献

KATO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Mikio', 18)}}的其他基金

Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
  • 批准号:
    23540216
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
  • 批准号:
    20540179
  • 财政年份:
    2008
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
  • 批准号:
    16540163
  • 财政年份:
    2004
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS
Banach几何结构与函数空间的研究及应用
  • 批准号:
    14540181
  • 财政年份:
    2002
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    11640172
  • 财政年份:
    1999
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    09640203
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
  • 批准号:
    09672131
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
  • 批准号:
    63570755
  • 财政年份:
    1988
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

金属酸化物クラスターの局所構造制御に基づく固体塩基触媒機能の開拓
基于金属氧化物簇局部结构控制的固体碱催化功能的开发
  • 批准号:
    22K14543
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topological groups with fixed point on compacta property and potentially dense subsets of groups
在紧致性上具有不动点的拓扑群和群的潜在稠密子集
  • 批准号:
    20K03615
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multipoint-Immobilized Ligands for Controlling Structures of Metal Complexes and Their Catalytic Performances
控制金属配合物结构的多点固定配体及其催化性能
  • 批准号:
    23850001
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Rigidity and fixed-point property of finitely generated groups
有限生成群的刚性和定点性质
  • 批准号:
    21540062
  • 财政年份:
    2009
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了