RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS

Banach几何结构与函数空间及ψ-直和的研究

基本信息

  • 批准号:
    18540185
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Geometric structures of Banach and function spaces and also ψ-direct sums of Banach spaces are investigated. Major results are as follows.(1)A sharp triangle inequality and its reverse inequality with n elements were obtained, where some conditions for equality attainedness were presented. We used them to investigate the uniform non-l^n_1-ness etc. of Banach spaces. We extended these inequalities and also we had some results on such type inequalities with a parameter.(2)Since it was introduced by the author etc. in 2002, the-ψ-direct sums have been attracting a good deal of attention. In this research project we obtained a sequence of results on the-ψ-direct sums concerning weak nearly uniform smoothness, WORTH property, Schur property, and uniform non-l^n_1-ness etc. As extreme cases some interesting results on l_1 and l_∞-sums are included: In particular we constructed uniformly non-l^3_1 Banach spaces which are not uniformly non-square, but have the fixed point property for non-expansive mappings (resp. but are super-reflexive).(3)We introduced the von Neumann-Jordan type and the James type constants and obtained several results on the uniform non-squareness and uniform normal structure etc. with these constants. Also we obtained some results on the weak modules of nearly uniform smoothness.(4)In July, 2007 the head investigator participated in the International Workshop on Banach space, Operator Theory and Applications to Nonlinear Analysis held in Harbin, China and presented an invited talk and a special lecture for graduate students, where he introduced some recent results on the-ψ-direct sums of Banach spaces. We organized the Second International Symposium on Banach and Function Spaces 2006in September, 2006, Kitakyushu, Japan, and its proceedings Banach and Function Spaces II (pp.467)was published by Yokohama Publishers in 2008.
研究了Banach空间和函数空间的几何结构以及Banach空间的ψ直和。主要结果如下:(1)得到了一个n元尖角三角形不等式及其逆不等式,给出了几个等式成立的条件。我们利用它们研究了Banach空间的一致非L、n_1-性等性质。我们推广了这些不等式,并得到了一些关于带参数的这类不等式的结果。(2)自2002年作者等人提出-ψ-直和以来,一直是人们关注的焦点。在这项研究中,我们得到了关于-ψ-直和的一系列结果,这些结果涉及弱近一致光滑性、价值性、舒尔性、一致非L^n_1-和等.作为极端情况,我们得到了关于L_1和L_∞-和的一些有趣的结果:特别地,我们构造了一致非L^3_1Banach空间,它们不是一致非方的,但具有非扩张映象的不动点性质。引入了von Neumann-Jordan和James类型的常数,并利用这些常数得到了一致非正方形、一致正规结构等方面的一些结果。2007年7月,中国主任参加了在哈尔滨举行的关于Banach空间、算子理论和非线性分析应用的国际研讨会,并作了特邀讲座和研究生专题讲座,介绍了关于Banach空间的-ψ-直和的一些最新结果。2006年9月,我们在日本北九州组织了第二届Banach与功能空间国际研讨会,其论文集《Banach与功能空间II》(第467页)于2008年由横滨出版社出版。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform non-1^n_1-ness of I_1-sums of Banach spaces
Banach 空间 I_1-和的一致非 1^n_1-ness
Banach and Function spaces II(Proceedings of the Second Interna-tional Symposium on Banach and Function spaces, September 14-17, 2006, Kitakyushu)
Banach 和函数空间 II(第二届 Banach 和函数空间国际研讨会论文集,2006 年 9 月 14-17 日,北九州)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kato;L. Maligranda;(Editors)
  • 通讯作者:
    (Editors)
三角不等式の精密化とその応用
三角不等式的精化及其应用
Refinement of the triangle ineqaulity and its application
三角不等式的精化及其应用
Some recent results on direct sums of Banach spaces(Invited Lecture)
Banach空间直和的一些最新结果(特邀报告)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takayuki;Tamura;Mikio Kato
  • 通讯作者:
    Mikio Kato
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Mikio其他文献

KATO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Mikio', 18)}}的其他基金

Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
  • 批准号:
    23540216
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
  • 批准号:
    20540179
  • 财政年份:
    2008
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
  • 批准号:
    16540163
  • 财政年份:
    2004
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS
Banach几何结构与函数空间的研究及应用
  • 批准号:
    14540181
  • 财政年份:
    2002
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    11640172
  • 财政年份:
    1999
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    09640203
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
  • 批准号:
    09672131
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
  • 批准号:
    63570755
  • 财政年份:
    1988
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Rigidity and fixed-point property of finitely generated groups
有限生成群的刚性和定点性质
  • 批准号:
    21540062
  • 财政年份:
    2009
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The word problem for 2-distributive modular lattices, the fixed point property of posets
2-分布模格的应用题,偏序集的不动点性质
  • 批准号:
    7884-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
The word problem for 2-distributive modular lattices, the fixed point property of posets
2-分布模格的应用题,偏序集的不动点性质
  • 批准号:
    7884-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
The word problem for 2-distributive modular lattices, the fixed point property of posets
2-分布模格的应用题,偏序集的不动点性质
  • 批准号:
    7884-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了