RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS

Banach几何结构与函数空间的研究及应用

基本信息

  • 批准号:
    14540181
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Geometric structures of Banach and function spaces are investigated, especially in relation with the notions of Rademacher type and cotype. Also φ-direct sums of Banach spaces are investigated, which seem important as one can easily, construct a plenty of examples of Banach spaces with a non ι_ptype norm from a convex function φ. Major results are as follows.1.On geometric structures and type, cotype :(1) We introduced the notions of strong (Rademacher) type and cotype, and characterized ρ-uniformly smooth, and q-uniformly convex spaces with these properties. The heredity of these properties to Lebesgue-Bochner spaces L_γ(X) was shown, as well.(2) We introduced strong random Clarkson inequality, and proved that this inequality holds in a Banach space if and only if the space is of strong type ρ, or equivalently, ρ-uniformly smooth. (Recall that random Clarkson inequality holds in a Banach space if and only if the space has type ρ ; Kato-Persson-Takahashi, Collect. Math. 51 (2000).)2. On geometric structures and norm inequalities :(1) Hanner-type inequalities are often useful to treat properties described with the modulus of convexity of a Banach space. We considered Hanner-type inequalities, especially, those with a weight and their n element version, and characterized optimal 2-uniform convexity and uniform non-squareness, etc. with these inequalitites :(2) We introduced a Schaffer-type constant for a Banach space and showed a relation with uniform normal structure.3. On φ-direct sums of Banach spaces :(1) We characterized the following properties of a φ-direct sum of Banach spaces : strict, uniform convexity, uniform non-squareness, uniform non Ι^n_1-ness, reflexivity, weak nearly uniform smoothness, smoothness, etc.(2) The James constant of an absolute norm on R2 was calculated for some cases, which gives a partial answer to a problem of Kato-Maligranda (JMAA 258 (2001)).
研究了 Banach 和函数空间的几何结构,特别是与 Rademacher 类型和 cotype 概念的关系。还研究了巴纳赫空间的 φ 直和,这似乎很重要,因为我们可以很容易地从凸函数 φ 构造出具有非 ι_p 型范数的巴纳赫空间的大量示例。主要结果如下: 1.关于几何结构和类型、共型:(1)引入了强(Rademacher)型和共型的概念,并用这些性质刻画了ρ-均匀光滑空间和q-均匀凸空间。这些性质对 Lebesgue-Bochner 空间 L_γ(X) 的遗传性也得到了证明。 (2) 我们引入了强随机 Clarkson 不等式,并证明了当且仅当该空间是强类型 ρ 或等效地 ρ 均匀光滑时,该不等式在 Banach 空间中成立。 (回想一下,随机克拉克森不等式在 Banach 空间中成立当且仅当该空间具有类型 ρ 时;Kato-Persson-Takahashi, Collect. Math. 51 (2000)。)2。关于几何结构和范数不等式:(1) Hanner 型不等式通常可用于处理用 Banach 空间的凸性模量描述的属性。我们考虑了汉纳型不等式,特别是那些带有权重及其n元版本的不等式,并用这些不等式表征了最优2-均匀凸性和均匀非方性等:(2)我们引入了Banach空间的Schaffer型常数,并展示了与均匀法式结构的关系。3.关于 Banach 空间的 φ 直和:(1)我们表征了 Banach 空间的 φ 直和的以下性质:严格、均匀凸性、均匀非正方形、均匀非 I^n_1 性、自反性、弱近均匀光滑性、光滑性等。(2)在某些情况下计算了 R2 上绝对范数的詹姆斯常数,这给出了以下问题的部分答案: 加藤-Maligranda (JMAA 258 (2001))。

项目成果

期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ken-ichi Mitani: "Smoothness of absolute norms on C^n"Journal of Convex Analysis. 10. 89-107 (2003)
Ken-ichi Mitani:“C^n 上绝对范数的平滑性”凸分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikio Kato: "On φ-direct sums of Banach spaces and convexity"Journal of the Australian Mathematical Society. 75. 413-422 (2003)
Mikio Kato:“关于 Banach 空间和凸性的 φ-直和”澳大利亚数学会杂志 75. 413-422 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Makoto Tsukada: "On Wirtinger-Beesak type integral inequalities"Proceedings of the 3rd International Conference on Nonlinear Analysis and Convex Analysis. (発表予定).
Makoto Tsukada:“论 Wirtinger-Beesak 型积分不等式”第三届非线性分析和凸分析国际会议论文集(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kichi-Suke Saito: "Uniform convexity of ψ-direct sums of Banach spaces"Journal of Mathematical Analysis and Applications. 277. 1-11 (2003)
Kichi-Suke Saito:“Banach 空间的 ψ 直和的一致凸性”数学分析与应用杂志 277. 1-11 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ken-ichi Mitani: "The James constant of absolute norms on C^2"Journal of Nonlinear and Convex Analysis. 4. 399-410 (2003)
Ken-ichi Mitani:“C^2 上绝对范数的詹姆斯常数”非线性与凸分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Mikio其他文献

KATO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Mikio', 18)}}的其他基金

Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
  • 批准号:
    23540216
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
  • 批准号:
    20540179
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS
Banach几何结构与函数空间及ψ-直和的研究
  • 批准号:
    18540185
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
  • 批准号:
    16540163
  • 财政年份:
    2004
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    11640172
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
  • 批准号:
    09672131
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    09640203
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
  • 批准号:
    63570755
  • 财政年份:
    1988
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Harmonic Analysis on Some Non Locally Convex Function Spaces
一些非局部凸函数空间的调和分析
  • 批准号:
    7602267
  • 财政年份:
    1976
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了