RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS
Banach几何结构与函数空间的研究及应用
基本信息
- 批准号:14540181
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric structures of Banach and function spaces are investigated, especially in relation with the notions of Rademacher type and cotype. Also φ-direct sums of Banach spaces are investigated, which seem important as one can easily, construct a plenty of examples of Banach spaces with a non ι_ptype norm from a convex function φ. Major results are as follows.1.On geometric structures and type, cotype :(1) We introduced the notions of strong (Rademacher) type and cotype, and characterized ρ-uniformly smooth, and q-uniformly convex spaces with these properties. The heredity of these properties to Lebesgue-Bochner spaces L_γ(X) was shown, as well.(2) We introduced strong random Clarkson inequality, and proved that this inequality holds in a Banach space if and only if the space is of strong type ρ, or equivalently, ρ-uniformly smooth. (Recall that random Clarkson inequality holds in a Banach space if and only if the space has type ρ ; Kato-Persson-Takahashi, Collect. Math. 51 (2000).)2. On geometric structures and norm inequalities :(1) Hanner-type inequalities are often useful to treat properties described with the modulus of convexity of a Banach space. We considered Hanner-type inequalities, especially, those with a weight and their n element version, and characterized optimal 2-uniform convexity and uniform non-squareness, etc. with these inequalitites :(2) We introduced a Schaffer-type constant for a Banach space and showed a relation with uniform normal structure.3. On φ-direct sums of Banach spaces :(1) We characterized the following properties of a φ-direct sum of Banach spaces : strict, uniform convexity, uniform non-squareness, uniform non Ι^n_1-ness, reflexivity, weak nearly uniform smoothness, smoothness, etc.(2) The James constant of an absolute norm on R2 was calculated for some cases, which gives a partial answer to a problem of Kato-Maligranda (JMAA 258 (2001)).
研究了Banach和功能空间的几何结构,尤其是与Rademacher类型和Cotype的通知有关。还研究了BANACH空间的φ直接码头,这似乎很容易容易,可以从凸函数φ中构造许多具有非iptype norm的Banach空间的例子。主要结果如下。1。在几何结构和类型中,cotype:(1)我们介绍了强(rademacher)类型和cotype的音符,并表征了ρ-均匀平滑的表征,并用这些属性表达了Q-均匀的空间。这些特性对Lebesgue-Bochner空间L_γ(X)的遗产也显示出来。(2)我们引入了强烈的随机Clarkson不平等,并证明这种不平等在Banach空间中存在于Banach空间,并且仅当该空间具有强类型ρ,或者是相等的ρ-均匀平滑的。 (回想一下,当且仅当空间具有ρ型; Kato-Persson-Takahashi,Collect。Math。51(2000)。)2。在几何结构和规范的不平等上:(1)汉纳型不等式通常可用于处理用Banach空间凸的模量描述的特性。我们考虑了汉纳(Hanner)型不平等,尤其是那些具有重量及其n个元素版本的不平等现象,并表征了最佳的2均匀凸度和均匀的非质量等。在banach空间的φ直接上:(1)我们表征了以下特性的Banach空间的φ-Direct总和:严格,均匀的凸度,均匀的非方面,非差异,非统一的非^n_1-性,反射性,反射性,弱几乎均匀的平稳性,平稳性,等于R2的绝对状态,该问题是ker n of Sove the r2的kal n offersightial n of So n of Sove to r2的问题,该问题是在R2上计算出的,该问题是按照R2的反应来计算的。 (JMAA 258(2001))。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kichi-Suke Saito: "Uniform convexity of ψ-direct sums of Banach spaces"Journal of Mathematical Analysis and Applications. 277. 1-11 (2003)
Kichi-Suke Saito:“Banach 空间的 ψ 直和的一致凸性”数学分析与应用杂志 277. 1-11 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Tsukada: "On Wirtinger-Beesak type integral inequalities"Proceedings of the 3rd International Conference on Nonlinear Analysis and Convex Analysis. (発表予定).
Makoto Tsukada:“论 Wirtinger-Beesak 型积分不等式”第三届非线性分析和凸分析国际会议论文集(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ken-ichi Mitani: "Smoothness of absolute norms on C^n"Journal of Convex Analysis. 10. 89-107 (2003)
Ken-ichi Mitani:“C^n 上绝对范数的平滑性”凸分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mikio Kato: "On φ-direct sums of Banach spaces and convexity"Journal of the Australian Mathematical Society. 75. 413-422 (2003)
Mikio Kato:“关于 Banach 空间和凸性的 φ-直和”澳大利亚数学会杂志 75. 413-422 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mikio Kato: "On ψ-direct sums of Banach spaces and convexity"Journal of the Australian Mathematical Society. 75. 413-422 (2003)
Mikio Kato:“论巴拿赫空间和凸性的 ψ 直和”澳大利亚数学会杂志 75. 413-422 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Mikio其他文献
KATO Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Mikio', 18)}}的其他基金
Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
- 批准号:
26400131 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
- 批准号:
23540216 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
- 批准号:
20540179 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS
Banach几何结构与函数空间及ψ-直和的研究
- 批准号:
18540185 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
- 批准号:
16540163 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
- 批准号:
11640172 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
- 批准号:
09640203 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
- 批准号:
09672131 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
- 批准号:
63570755 - 财政年份:1988
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
ZMYND10基因突变通过IGF信号通路调控DNAAFs功能在青少年特发性脊柱侧凸中的致病作用及机制研究
- 批准号:82360419
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PGC-1α介导的椎旁肌线粒体功能改变在退变性腰椎侧凸中的发病机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PGC-1α介导的椎旁肌线粒体功能改变在退变性腰椎侧凸中的发病机制研究
- 批准号:82272540
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
基于三维运动学和椎旁肌功能的退行性脊柱侧凸长节段融合术后PJK发生机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于三维运动学和椎旁肌功能的退行性脊柱侧凸长节段融合术后PJK发生机制研究
- 批准号:82102612
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Data-driven selection of a convex loss function via shape-constrained estimation
通过形状约束估计来数据驱动选择凸损失函数
- 批准号:
2311299 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
- 批准号:
26400131 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
- 批准号:
23540216 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monotone and convex operator functions with applications in quantum information and mathematical physics
单调和凸算子函数在量子信息和数学物理中的应用
- 批准号:
23540231 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of Discrete Convexity Paradigm
离散凸范式的建立
- 批准号:
15360043 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)