Bifurcations of Dynamical Systems Satisfying the Pseudo-orbit Tracing Property
满足伪轨道追迹性质的动力系统的分岔
基本信息
- 批准号:11640217
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to analyze the bifurcation phenomena of 1-parameter family containing a diffeomorphism which satisfies the pseudo-orbit tracing property (abbr.POTP). Remark that the POTP is also well known as the shadowing property. Before 2000, we had characterized diffeomorphisms in the C^1 interior of diffeomorphisms satisfying the POTP, and in 2000, by making use of those results the dynamics, more precisely, the property of the intersection of the stable and unstable manifolds of diffeomorphisms satisfying the (pseudo-orbit) Lipschitz shadowing property (abbr.LSP) was characterized.Then, in 2001 we tried to analyze the bifurcation phenomena of diffeomorphisms lying in the boundary of the set of diffeomorphisms satisfying the LSP.Unfortunately, we could not produce so splendid achievements in the investigation, but I am strongly convinced that the results on the LSP will play an important role to solve the problem. Furthermore, in 2001 we had noticed that our method in this project also work for C^1 vector fields. Actually, by Hayashi's connecting lemma we have characterized the C^1 interior of the set of vector fields having the topological stability (this is also a remarkable result of this project). In general, since the topological stability is stronger than the POTP, we cannot characterize the dynamics of vector fields satisfying the POTP at once. But, by modifying the techniques used in the proof it might be possible to characterize the dynamics in the near future.
本研究项目的目的是分析满足赝轨道追迹性质(简称POTP)的含有微分同胚的1参数族的分岔现象。请注意,POTP 也称为阴影属性。在 2000 年之前,我们已经描述了满足 POTP 的微分同胚的 C^1 内部的微分同胚,并且在 2000 年,通过利用这些结果,更准确地描述了满足(伪轨道)Lipschitz 阴影性质(缩写 LSP)的微分同胚的稳定流形和不稳定流形的交集的性质。 2001年我们试图分析满足LSP的微分同胚集合边界上的微分同胚的分岔现象。不幸的是,我们在研究中未能取得如此辉煌的成果,但我坚信LSP的结果将对解决这个问题发挥重要作用。此外,在 2001 年,我们注意到我们在这个项目中的方法也适用于 C^1 向量场。实际上,通过Hayashi的连接引理我们已经刻画了具有拓扑稳定性的向量场集合的C^1内部(这也是该项目的一个显着成果)。一般来说,由于拓扑稳定性比 POTP 更强,所以我们不能立即表征满足 POTP 的矢量场的动力学。但是,通过修改证明中使用的技术,也许可以在不久的将来描述动态特征。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Moriyasu, K.Sakai and N.Sumi: "Vector fields with topological stability"Transactions of the American Mathematical Society. (to appear).
K.Moriyasu、K.Sakai 和 N.Sumi:“具有拓扑稳定性的向量场”美国数学会汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sakai: "Diffeomorphisms with weak shadowing"Fundamenta Mathematicae. 168 (to appear). (2001)
K.Sakai:“微分同胚与弱阴影”基础数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Sakai: "Shadowing properties of L-hyperbolic homeomorphisms"Topology and its Applecations. (to appear). (2000)
Kazuhiro Sakai:“L-双曲同胚的阴影特性”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sakai: "Shadowing properties of L-hyperbolic homeomorphisms"Topology and its Applications. 112 (to appear). 229-243 (2001)
K.Sakai:“L-双曲同胚的遮蔽特性”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Sakai: "Shadowing properties of L-hyperbolic homeomorphisms"Topology and its Applications. (to appear). (2001)
Kazuhiro Sakai:“L-双曲同胚的遮蔽特性”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAI Kazuhiro其他文献
SAKAI Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAI Kazuhiro', 18)}}的其他基金
Integrability in gauge-gravity correspondence and gluon scattering amplitudes
规范重力对应和胶子散射振幅的可积性
- 批准号:
22740172 - 财政年份:2010
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
ON THE CHARACTERIZATION OF HOMOCLINIC CLASSES BY MEANS OF THE SHADOWING PROPERTY
论用阴影性质表征同宿类
- 批准号:
22540218 - 财政年份:2010
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ON THE CHARACTERIZATION OF CHAIN COMPONENTS BY MEANS OF THE SHADOWING PROPERTY
论用影子特性表征链元件
- 批准号:
19540209 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing participatory intervention toolkits and its monitoring systems for workplace risk reduction by health care workers in Asia
开发参与式干预工具包及其监测系统,以减少亚洲医护人员的工作场所风险
- 批准号:
19406018 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on the characterization of C^r-diffeomorphisms possessing the shadowing property
具有遮蔽性质的C^r-微分同胚的表征研究
- 批准号:
17540187 - 财政年份:2005
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Effacts of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
- 批准号:
16510210 - 财政年份:2004
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An attempt toward a solution to the C^r-stability conjecture (r【greater than or equal】2)
尝试解决C^r稳定性猜想(r【大于或等于】2)
- 批准号:
15540197 - 财政年份:2003
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Effects of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
- 批准号:
14594029 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcations of vector fields possessing the shadowing property
具有阴影特性的矢量场的分叉
- 批准号:
13640225 - 财政年份:2001
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of exposure risk assessment technique with continuous monitoring of personal environment.
建立持续监测个人环境的暴露风险评估技术。
- 批准号:
11470114 - 财政年份:1999
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
- 批准号:19875020
- 批准年份:1998
- 资助金额:7.5 万元
- 项目类别:面上项目
化学反应器设计中的分支(Bifurcation)问题
- 批准号:28670493
- 批准年份:1986
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
- 批准号:
23K13353 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
- 批准号:
2307650 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
- 批准号:
23H01295 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
The clarification of reaction path bifurcation mechanisms affected by nuclear quantum effects
核量子效应影响的反应路径分岔机制的阐明
- 批准号:
23K04675 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
- 批准号:
22K03442 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Discovery Grants Program - Individual
Control of Carotid Artery Bifurcation Blood Flow
颈动脉分叉血流的控制
- 批准号:
575625-2022 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10373696 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




