非圧縮性粘性流体の基礎方程式の研究

不可压缩粘性流体基本方程研究

基本信息

  • 批准号:
    11874026
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

Navier-Stokes方程式の解の安定性の解析にはStokes作用素Aに加えて,変数係数の低階の微分作用素を含んだ項Bを摂動として処理しなければならない.外部問題の場合,よく知られた半群生成の摂動論は役に立たない.何故ならば,作用素A+Bのスペクトルの存在範囲をAのそれを不変にする様に摂動させなければならないからである.その際,関数空間の選択に注意を払う必要がある.定常解の存在と安定性の問題は斉次Sobolev空間における考察でひと段落したものの,3次元外部領域の場合はnet forceがゼロであるという不自然な条件は依然そのままであった.これを克服するためにはStokes作用素が全単射であり,かつスケール不変則を満たすような新たな関数空間を見い出さねばならなかった.その試みとして,まずFourier変換,特異積分作用素が使える全空間R^nにおいてMorrey空間を実補間した空間を導入し,Navier-Stokes方程式を解くことに成功した.これまでは複素補間を用いて、Navier-Stokes方程式の強解(古典解)を構成したが、Riesz-Thorinの不等式に代表される様に,複素補間理論はシャープな補間不等式の係数が得られる反面,両立対の空間は広がらない.このことは,すべてのL^γ(1<γ<∞)において線形化方程式(Stokes方程式)が可解である内部問題に関しては障害とならなかった.一方,実補間空間の利点は、両立対の空間からより広い空間が得られることであり,線形化方程式の可解性に制限のある外部問題に実補間空間理論を導入したことは,画期的な試みであった.応用として,Lorentz空間L^<p,q>(Ω)において外部定常解を構成し,更にnet forceの条件を仮定することなく,その安定性を示した.
The stability analysis of the Navier-Stokes equations includes Stokes action A, differential action B, differential action A, differential In the case of external problems, we know that semigroups are generated. Why is it that the action element A+B exists in the range of A and B? When the number of space is selected, it is necessary to pay attention to it. The problem of the existence and stability of a steady solution to the problem of sub-Sobolev space is investigated in paragraphs, and the case of a three-dimensional outer domain is net force. To overcome the Stokes effect, we need to create a new space. The Navier-Stokes equation is solved successfully by introducing the Morrey space into the whole space R^n. The strong solutions (classical solutions) of Navier-Stokes equations are constructed by using complex prime interpolation theory. Riesz-Thorin inequality is used to represent these solutions. The coefficients of complex prime interpolation theory are obtained from the inverse of Riesz-Thorin inequality. L^γ(1<γ<∞) is a linear equation (Stokes equation) that is solvable for internal problems. A square, complement space of interest points, vertical space, space, linear equation of solvability constraints, external problems, complement space theory, drawing period, try. In terms of Lorentz space L^<p,q>(Ω), the external steady state solution is constructed, and the net force condition is determined.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Kozono, T.Ogawa, H.Tanisaka: "Well-Posedness for the Benjamin equations"J. Korcan Math. Soc. 38. 1205-1234 (2001)
H.Kozono、T.Okawa、H.Tanisaka:“本杰明方程的适定性”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono,H.,Taniuchi,Y.: "Limitting case of the Sobolev inequality on BMO, with application to the Euler equation."Commu.Math.Phy.. 214. 153-197 (2000)
Kozono,H.,Taniuchi,Y.:“BMO 上 Sobolev 不等式的极限情况,并应用于欧拉方程。”Commu.Math.Phy.. 214. 153-197 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono,H.,Taniuchi,Y.: "Bilinear estimates on BMO and the Navier-Stokes equations"Math Z.. 235. 173-194 (2000)
Kozono,H.,Taniuchi,Y.:“BMO 和纳维-斯托克斯方程的双线性估计”Math Z.. 235. 173-194 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小薗 英雄: "Navier-Stokes方程式"数学.
Hideo Kozono:“纳维-斯托克斯方程”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono H.,Yamazaki M.: "Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains"Nonlinear Analysis. 38. 759-770 (1999)
Kozono H.,Yamazaki M.:“外部域中平稳纳维-斯托克斯方程弱解的唯一性准则”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小薗 英雄其他文献

乱流の数学的理論
湍流数学理论
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ishii;S.Suzuki;S.Adachi;小薗 英雄
  • 通讯作者:
    小薗 英雄

小薗 英雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小薗 英雄', 18)}}的其他基金

Mathematical Theory of Partial Differential Equations in Fluid Mechanics
流体力学偏微分方程的数学理论
  • 批准号:
    21H04433
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
粘性流体の数学的理論
粘性流体数学理论
  • 批准号:
    03F00021
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
粘性流体の数学的理論
粘性流体数学理论
  • 批准号:
    03F03021
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の適切性に関する統一理論の構築
非线性偏微分方程适用性统一理论的构建
  • 批准号:
    13304008
  • 财政年份:
    2001
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
調和解析学と非線形偏微分方程式の融合を目指して
旨在整合谐波分析和非线性偏微分方程
  • 批准号:
    10894009
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非有界領域における粘性流体の方程式に関する研究
无界区域粘性流体方程组研究
  • 批准号:
    04740091
  • 财政年份:
    1992
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
外部領域におけるナビエ・ストークス方程式の強解について
外域纳维-斯托克斯方程的强解
  • 批准号:
    63740080
  • 财政年份:
    1988
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

くし型列状円柱群を越流するボア状流れの運動エネルギー減衰効果
孔型流溢出梳状系列圆柱体的动能衰减效应
  • 批准号:
    08650217
  • 财政年份:
    1996
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
平面上に直立する有限長円柱群による越流流れのエネルギー減衰効果
平面上直立的一组有限长度圆柱体溢流的能量衰减效应
  • 批准号:
    06650216
  • 财政年份:
    1994
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弾性方程式の解の局所エネルギー減衰について
弹性方程解的局部能量衰减
  • 批准号:
    02740086
  • 财政年份:
    1990
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了