粘性流体の数学的理論

粘性流体数学理论

基本信息

  • 批准号:
    03F03021
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

弱L^r空間におけるNavier-Stokes方程式の弱解の内部正則性ΩをR3の任意の開集合とし,時空間Ω×(0,T)におけるNavier-Stokes方程式の弱解u∈L^∞(0,T;L2(Ω))の内部正則性を考察した.ここでuに関してはΩの境界∂Ωにおけるいかなる仮定も課していないことが重要である.これまでNavier-Stokes方程式の弱解の内部正則性定理は,多くの場合u∈L^2(0,T;H^1_0(Ω)),D×(a,b)におけるある種の付加条件のもとで,同部分領域におけるuの滑らかさを導出していた.このように対象となる領域の境界値を指定して,弱解の内部正則性を導くことは,通常の非線形楕円型,放物型に対するものとは異なるが,Navier-Stokes方程式の場合,いまひとつの未知関数p(圧力)の制御のためにやむを得なかった.そこで,本研究ではSerrinの提唱した渦ω=rotu度の方程式に着目して,uの境界条件を取り除くことに成功した.実際,ある正定数ε_0が存在して‖u‖_<L^s_w>(0,T;L^r_w(Ω))【less than or equal】εならば,u∈L^∞(D×(a,b))であることが明らかにされた.ここに,r,sは条件2/s+3/r=1,3【less than or equal】s【less than or equal】∞を満たし,L^r_wは弱L^r-空間を表す.応用として,弱解の孤立特異点の除去可能性定理が得られる.すなわち,(x_0,t_0)∈Ω×(0,T)を中心とする放物型球Q_R(x_0,t_0)={(x,t);|x-x_0|<R,t-R2<t<t_0}において|u(x,t)|【less than or equal】ε_0|t-t_0|^<θ/2>|x-x_0|^<-1+θ>,0【less than or equal】θ<1であれば,u∈L^∞(Q_R(x_0,t_0)が従う.
The weak solution of the weak L ^ r space differential Navier-Stokes equation shows that the interior positive Ω R 3 is arbitrary open set, and the weak solution u ∈ L ^ ∞ of the time space Ω × (0PowerT) linear Navier-Stokes equation is investigated. I don't know what to do. I don't know if it's important. The weak solution of the Navier-Stokes equation is known as the internal positivity theorem, which is the result of the combination of the weak solution of the Navier-Stokes equation and the internal positivity theorem of the weak solution of the Navier-Stokes equation. In general, it is necessary to determine the accuracy of the field, and the weak solution of the internal positive property. It is usually non-physical, the Navier-Stokes equation is closed, and the unknown number p (force) is used to control the error. In this study, the equation of equation ω = Rotu is raised by the Serrin, and the boundary condition is divided by the equation of success. In the world, there exists a positive definite number ε _ 0, which is called lt; L ^ s _ wiggt; (0maths T; L ^ r _ w (Ω)) [less than or equal] ε linear equation, u ∈ L ^ ∞ (D × (a) b). R ^ r _ w is weak in L ^ r _ w table. The weak solution isolates the special point and removes the possibility theorem by using the weak solution. | x-x_0 | & lt;R,t-R2<t<t_0} toy ball | u (XMagol t) | [less than or equal] ε _ 0 | t-t_0 | ^ & lt; θ

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小薗 英雄其他文献

乱流の数学的理論
湍流数学理论
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ishii;S.Suzuki;S.Adachi;小薗 英雄
  • 通讯作者:
    小薗 英雄

小薗 英雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小薗 英雄', 18)}}的其他基金

Mathematical Theory of Partial Differential Equations in Fluid Mechanics
流体力学偏微分方程的数学理论
  • 批准号:
    21H04433
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
粘性流体の数学的理論
粘性流体数学理论
  • 批准号:
    03F00021
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の適切性に関する統一理論の構築
非线性偏微分方程适用性统一理论的构建
  • 批准号:
    13304008
  • 财政年份:
    2001
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非圧縮性粘性流体の基礎方程式の研究
不可压缩粘性流体基本方程研究
  • 批准号:
    11874026
  • 财政年份:
    1999
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
調和解析学と非線形偏微分方程式の融合を目指して
旨在整合谐波分析和非线性偏微分方程
  • 批准号:
    10894009
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非有界領域における粘性流体の方程式に関する研究
无界区域粘性流体方程组研究
  • 批准号:
    04740091
  • 财政年份:
    1992
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
外部領域におけるナビエ・ストークス方程式の強解について
外域纳维-斯托克斯方程的强解
  • 批准号:
    63740080
  • 财政年份:
    1988
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

端点最大正則性原理とそのNavier-Stokes方程式への応用
端点最大正则原理及其在纳维-斯托克斯方程中的应用
  • 批准号:
    23K20804
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
圧縮性Navier-Stokes方程式の空間非一様な定常解に対する安定性解析
可压缩纳维-斯托克斯方程空间非均匀稳态解的稳定性分析
  • 批准号:
    23KJ0942
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
全空間上の圧縮性Navier-Stokes方程式の時間周期解の安定性問題
可压缩纳维-斯托克斯方程全空间时间周期解的稳定性问题
  • 批准号:
    22K13946
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computer-assisted solution verification for the Navier-Stokes equation with large Reynolds numbers
大雷诺数纳维-斯托克斯方程的计算机辅助解验证
  • 批准号:
    20KK0306
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Acceleration of a Navier-Stokes Equation Solver Using GPU Parallelization and Multigrid
使用 GPU 并行化和多重网格加速纳维-斯托克斯方程求解器
  • 批准号:
    539961-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Computer-assisted proof for stationary solution existence of Navier-Stokes equation on 3D domain
3D域上Navier-Stokes方程平稳解存在性的计算机辅助证明
  • 批准号:
    18K03411
  • 财政年份:
    2018
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
圧縮性Navier-Stokes方程式の自由境界問題の解の安定性解析
可压缩纳维-斯托克斯方程自由边界问题解的稳定性分析
  • 批准号:
    17H07160
  • 财政年份:
    2017
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
摩擦型境界条件下でのNavier-Stokes方程式の有限要素近似
摩擦边界条件下纳维-斯托克斯方程的有限元近似
  • 批准号:
    11J00848
  • 财政年份:
    2011
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Software development of advanced methods for the incompressible Navier-Stokes equation
不可压缩纳维-斯托克斯方程先进方法的软件开发
  • 批准号:
    398161-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Navier-Stokes方程式の解の漸近挙動の研究
纳维-斯托克斯方程解的渐近行为研究
  • 批准号:
    06F06038
  • 财政年份:
    2006
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了