粘性流体の数学的理論

粘性流体数学理论

基本信息

  • 批准号:
    03F03021
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

弱L^r空間におけるNavier-Stokes方程式の弱解の内部正則性ΩをR3の任意の開集合とし,時空間Ω×(0,T)におけるNavier-Stokes方程式の弱解u∈L^∞(0,T;L2(Ω))の内部正則性を考察した.ここでuに関してはΩの境界∂Ωにおけるいかなる仮定も課していないことが重要である.これまでNavier-Stokes方程式の弱解の内部正則性定理は,多くの場合u∈L^2(0,T;H^1_0(Ω)),D×(a,b)におけるある種の付加条件のもとで,同部分領域におけるuの滑らかさを導出していた.このように対象となる領域の境界値を指定して,弱解の内部正則性を導くことは,通常の非線形楕円型,放物型に対するものとは異なるが,Navier-Stokes方程式の場合,いまひとつの未知関数p(圧力)の制御のためにやむを得なかった.そこで,本研究ではSerrinの提唱した渦ω=rotu度の方程式に着目して,uの境界条件を取り除くことに成功した.実際,ある正定数ε_0が存在して‖u‖_<L^s_w>(0,T;L^r_w(Ω))【less than or equal】εならば,u∈L^∞(D×(a,b))であることが明らかにされた.ここに,r,sは条件2/s+3/r=1,3【less than or equal】s【less than or equal】∞を満たし,L^r_wは弱L^r-空間を表す.応用として,弱解の孤立特異点の除去可能性定理が得られる.すなわち,(x_0,t_0)∈Ω×(0,T)を中心とする放物型球Q_R(x_0,t_0)={(x,t);|x-x_0|<R,t-R2<t<t_0}において|u(x,t)|【less than or equal】ε_0|t-t_0|^<θ/2>|x-x_0|^<-1+θ>,0【less than or equal】θ<1であれば,u∈L^∞(Q_R(x_0,t_0)が従う.
Internal Regularity of Weak Solutions of Navier-Stokes Equations in Weak L^r Spaces Ω φ R 3 Any Open Set, Internal Regularity of Weak Solutions of Navier-Stokes Equations u∈L^∞(0,T;L2(Ω)) in Time Spaces Ω×(0,T) This is the first time I've ever been to a school. The interior regularity theorem for weak solutions of Navier-Stokes equations is derived for many cases u∈L^2(0,T;H^1_0(Ω)),D×(a,b). The boundary value of the domain of the corresponding image is specified, and the internal regularity of the weak solution is derived. In general, the nonlinear model and the nonlinear model are different. In the case of Navier-Stokes equations, the unknown relation p(pressure force) is controlled. In this paper, we study the equation of Serrin ω=rotu,u boundary condition and its success. In fact, the positive constant ε_0 exists in <$<$$> u <$_<L^s_w>(0,T;L^r_w(Ω))[less than or equal] ε <$,u∈L^∞(D×(a,b)). ,r,s By using this theorem, the elimination possibility theorem for isolated singular points of weak solutions is obtained. Q_R(x_0,t_0)={(x,t)};| x-x_0| <R,t-R2<t<t_0}において|u(x,t)|【less than or equal】ε_0| t-t_0| ^<θ/2>| x-x_0| ^<-1+θ>,0【less than or equal】θ<1であれば,u∈L^∞(Q_R(x_0,t_0)が従う.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小薗 英雄其他文献

乱流の数学的理論
湍流数学理论
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ishii;S.Suzuki;S.Adachi;小薗 英雄
  • 通讯作者:
    小薗 英雄

小薗 英雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小薗 英雄', 18)}}的其他基金

Mathematical Theory of Partial Differential Equations in Fluid Mechanics
流体力学偏微分方程的数学理论
  • 批准号:
    21H04433
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
粘性流体の数学的理論
粘性流体数学理论
  • 批准号:
    03F00021
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形偏微分方程式の適切性に関する統一理論の構築
非线性偏微分方程适用性统一理论的构建
  • 批准号:
    13304008
  • 财政年份:
    2001
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非圧縮性粘性流体の基礎方程式の研究
不可压缩粘性流体基本方程研究
  • 批准号:
    11874026
  • 财政年份:
    1999
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
調和解析学と非線形偏微分方程式の融合を目指して
旨在整合谐波分析和非线性偏微分方程
  • 批准号:
    10894009
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非有界領域における粘性流体の方程式に関する研究
无界区域粘性流体方程组研究
  • 批准号:
    04740091
  • 财政年份:
    1992
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
外部領域におけるナビエ・ストークス方程式の強解について
外域纳维-斯托克斯方程的强解
  • 批准号:
    63740080
  • 财政年份:
    1988
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

端点最大正則性原理とそのNavier-Stokes方程式への応用
端点最大正则原理及其在纳维-斯托克斯方程中的应用
  • 批准号:
    23K20804
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
圧縮性Navier-Stokes方程式の空間非一様な定常解に対する安定性解析
可压缩纳维-斯托克斯方程空间非均匀稳态解的稳定性分析
  • 批准号:
    23KJ0942
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Large steady solutions to the free-boundary Navier-Stokes equations
自由边界纳维-斯托克斯方程的大稳态解
  • 批准号:
    2886064
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Studentship
全空間上の圧縮性Navier-Stokes方程式の時間周期解の安定性問題
可压缩纳维-斯托克斯方程全空间时间周期解的稳定性问题
  • 批准号:
    22K13946
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studies on the Navier-Stokes equations by numerical methods
纳维-斯托克斯方程的数值方法研究
  • 批准号:
    22K03438
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
End-point maximal regularity and its application to the Navier-Stokes equations
端点最大正则性及其在纳维-斯托克斯方程中的应用
  • 批准号:
    21H00992
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Removability of time-dependent singularities in the Navier-Stokes equations
纳维-斯托克斯方程中与时间相关的奇点的可去除性
  • 批准号:
    21J14366
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Applied mathematics master's degree - numerical methods for the incompressible Navier-Stokes equations
应用数学硕士学位 - 不可压缩纳维-斯托克斯方程的数值方法
  • 批准号:
    553966-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
  • 批准号:
    2012031
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了