Highly accurate simulation of electrokinetic transport processes in nanopores

纳米孔中动电传输过程的高精度模拟

基本信息

项目摘要

Subproject B3 is dedicated to the detailed modelling and highly accurate simulation of ion transport processes in transient nanopores under an applied potential. Thus, there is a direct link to the guiding experiment Electrically Modulatable Nanopores. The scientific focus of B3 is on the development of adaptive and hybrid approaches, which are particularly suitable to bridge the typically very different spatial and temporal scales in these transport processes and to numerically adequately implement the usually strong coupling between transport mechanisms. The central aim is to develop numerical methods of high numerical and physical fidelity for ion transport to produce physically accurate solutions. This is of high relevance, since classical measures of numerical fidelity (accuracy, stability, consistency) are not sufficient to address how well the system physics is represented by a particular numerical method. In practice, this is a surreptitious and subtle problem, since such a failure rarely causes outright abort of simulations due to instabilities, i.e., it can potentially go unnoticed leading to physically incorrect but converged results. This project will contribute to advancing the field of numerical methods and address the growing need for physically accurate solutions of ion transport processes in complex systems such as in transient nanopores under an applied potential. In particular, we will devise a hybrid atomistic-continuum (HAC) approach so as to couple molecular dynamics (MD) and continuum solvers, respectively. This enables a detailed computational analysis of ion transport processes close to the pore walls, where MD is used. Such an approach is particularly useful to examine transient pore systems where pure MD would be computationally prohibitive. As for the continuum solver, we will aim to implement most recent model formulations using improved closures to take into account effects like the finite size and solvation of ions in electrolytes. Moreover, a central objective is to develop a numerical method of high fidelity which accounts for the significant coupling between transport processes by means of an implicit simultaneous solution approach.
子项目B3致力于在应用电位下瞬态纳米孔中离子传输过程的详细建模和高精度模拟。因此,这与电可调纳米孔的指导实验有直接的联系。B3的科学重点是自适应和混合方法的发展,这些方法特别适合在这些运输过程中弥合典型的非常不同的空间和时间尺度,并在数值上充分实现运输机制之间通常很强的耦合。中心目标是发展高数值和物理保真离子传输的数值方法,以产生物理上精确的解决方案。这是高度相关的,因为传统的数值保真度度量(精度、稳定性、一致性)不足以解决系统物理如何很好地由特定的数值方法表示。在实践中,这是一个隐蔽而微妙的问题,因为这样的失败很少会由于不稳定而导致模拟的彻底中止,也就是说,它可能会被忽视,导致物理上不正确但收敛的结果。该项目将有助于推动数值方法领域的发展,并解决复杂系统中离子传输过程的物理精确解决方案日益增长的需求,例如在应用电位下的瞬态纳米孔。特别是,我们将设计一种混合原子-连续介质(HAC)方法,以便分别将分子动力学(MD)和连续介质求解器耦合起来。这使得可以对靠近孔壁的离子传输过程进行详细的计算分析,其中使用了MD。这种方法对于检测瞬态孔隙系统特别有用,因为纯MD在计算上是禁止的。至于连续介质求解器,我们的目标是实现最新的模型公式,使用改进的闭包来考虑诸如有限尺寸和电解质中离子的溶剂化等影响。此外,中心目标是开发一种高保真度的数值方法,该方法通过隐式同时求解方法来解释传输过程之间的重要耦合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Holger Marschall其他文献

Dr.-Ing. Holger Marschall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Holger Marschall', 18)}}的其他基金

Development and Application of a Direct Numerical Method for Reactive Transport Processes in Bubble Systems
气泡系统反应输运过程直接数值方法的开发与应用
  • 批准号:
    256677419
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

非定常复杂流场的时空高精度高效率新格式的研究
  • 批准号:
    50376004
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
  • 批准号:
    10658204
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
  • 批准号:
    10724044
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
  • 批准号:
    10724852
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
  • 批准号:
    10726175
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing novel neural network tools for accurate and interpretable dynamical modeling of neural circuits
开发新型神经网络工具,用于准确且可解释的神经回路动态建模
  • 批准号:
    10752956
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
  • 批准号:
    RGPIN-2017-05524
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了