Stochastic analysis on loop space

循环空间的随机分析

基本信息

  • 批准号:
    12640173
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

(1) We gave an estimate on the gap of spectrum of Schrodinger operators by using weak Poincare inequality. Also we gave an estimate on the distribution function of the ground state by the inequality.(2) Let H be the space of H^1-paths on a Euclidean space. Consider a Morse function on H which is a sum of the energy of the path and a smooth function on H which can be estended to a smooth function on the space of continuous paths. We defined a Witten Laplacian twisted by the Morse function on a Wiener space and proved that the first order behavior of the lowest eigenvalue under semiclassical limit is determined by the hessian of the Morse function.(3) Consider a continuous function F on the Cameron-Martin subspace of a classical Wiener space. Assume F can be extended to a continuous function F on the Wiener space. Then if the domain {F > 0} is a connected set, then weak Poincare inequalities hold on {F > 0}. We extend this result to the case where F is a continuous function of Brownian rough paths.(4) We proved very precise Gaussian estimates on heat kernels on Riemannian manifolds which possess poles under the assumptions that the curvature and the derivatives go to 0 sufficiently fast at infinity.
(1) We gave an estimate on the gap of spectrum of Schrodinger operators by using weak Poincare inequality. Also we gave an estimate on the distribution function of the ground state by the inequality.(2) Let H be the space of H^1-paths on a Euclidean space. Consider a Morse function on H which is a sum of the energy of the path and a smooth function on H which can be estended to a smooth function on the space of continuous paths. We defined a Witten Laplacian twisted by the Morse function on a Wiener space and proved that the first order behavior of the lowest eigenvalue under semiclassical limit is determined by the hessian of the Morse function.(3) Consider a continuous function F on the Cameron-Martin subspace of a classical Wiener space. Assume F can be extended to a continuous function F on the Wiener space. Then if the domain {F > 0} is a connected set, then weak Poincare inequalities hold on {F > 0}. We extend this result to the case where F is a continuous function of Brownian rough paths.(4) We proved very precise Gaussian estimates on heat kernels on Riemannian manifolds which possess poles under the assumptions that the curvature and the derivatives go to 0 sufficiently fast at infinity.

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Aida: "Precise Gaussian lower bounds on heat kernels"Stochastic in Finite and Infinite dimensions. 1-28 (2001)
S.Aida:“热核的精确高斯下界”有限和无限维度中的随机。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperhounded semi groups"Journal of Functional Analysis. 185. 474-526 (2001)
S.Aida:“生成超猎犬半群的薛定谔算子谱间隙的估计”泛函分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Aida: "An estimate of the gag of spectrium of Sehrochinger operators which generate hyperbounded semigranps"Journal of Functional Analysis. 185. 474-526 (2001)
S.Aida:“对生成超界半粒的 Sehrochinger 算子谱的估计”函数分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Aida: "Precise Gaussian estimater of heat kernols on asymptotically plat Riemannism menifolds with poles"Proceedings of the 1st Sino-German Conference on stochastic analysis. (to appear).
S.Aida:“带极点的渐近平黎曼流形上热核的精确高斯估计”第一届中德随机分析会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Aida,T-S.Zhang: "On the short time asymptotics of transition probability of diffusion on path groups"Potential Analysic. (to appear).
S.Aida,T-S.Zhang:“路径群上扩散转移概率的短时渐近”势分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIDA Shigeki其他文献

AIDA Shigeki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIDA Shigeki', 18)}}的其他基金

New development of infinite dimensional stochastic analysis and its applications
无限维随机分析新进展及其应用
  • 批准号:
    21244009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic analysis and semi-classical problems on infinite dimensional spaces
无限维空间上的随机分析和半经典问题
  • 批准号:
    18540175
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis and semi-classical problem in infinite dimensional spaces
无限维空间中的随机分析和半经典问题
  • 批准号:
    15540169
  • 财政年份:
    2003
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Siochastic Analysis on loop spaces
循环空间的随机分析
  • 批准号:
    10640147
  • 财政年份:
    1998
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    ARC Future Fellowships
LEAPS-MPS: Elliptic theory for the Schrodinger operator
LEAPS-MPS:薛定谔算子的椭圆理论
  • 批准号:
    2137743
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Distribution of Eigenvalues of the Schrodinger Operator on Compact Manifolds. Matrix Model and Asymptotics of Orthogonal Polynomials
紧流形上薛定谔算子的特征值分布。
  • 批准号:
    9623214
  • 财政年份:
    1996
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Properties of a Random Schrodinger Operator
数学科学:随机薛定谔算子的谱性质
  • 批准号:
    9210806
  • 财政年份:
    1992
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了