Computer Simulations of nonlinear dynamics of entangled polymer liquids
纠缠聚合物液体非线性动力学的计算机模拟
基本信息
- 批准号:12640372
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using molecular dynamics simulations, we study dynamics of a model polymer melt composed of short chains with bead number N=10 in supercooled states. In quiescent conditions, the stress relaxation function is calculated, which exhibits a stretched exponential relaxation on the time scale of the n relaxation time and ultimately follows the Rouse dynamics. In sheared steady states, shear-thinning and elongation of chains into ellipsoidal shapes take place for a strong shear regime. In such strong shear, we find that the chains undergo random tumbling motion taking stretched and compact shapes alternatively.We next visualized entanglements in polymer melts. In quiescent states, a particle at an entanglement interacts with those belonging to a different chain persistently for long times. Entangled regime on each chain can be identified if the inter-chain interaction energy supported by each particle is averaged over a time interval much longer than monomeric relaxation time. We then apply a shear flow with rate much faster than the entanglement motion. With increasing strain the chains take zigzag shapes with bending taking place at the entangled regions. The chains arc first stretched as a network but disentanglement events subsequently occur, resulting in stress overshoot observed experimentally.
利用分子动力学模拟方法,研究了珠数N=10的短链模型聚合物熔体在过冷态下的动力学。在静态条件下,计算了应力松弛函数,该函数在n松弛时间的时间尺度上呈现伸展的指数松弛,并最终遵循Rouse动力学。在剪切稳定状态下,在较强的剪切条件下,链发生剪切变薄并伸长成椭球状。在如此强的剪切下,我们发现链经历了随机翻滚运动,呈拉伸和紧凑交替的形状。接下来,我们可视化了聚合物熔体中的纠缠。在静止状态下,处于纠缠状态的粒子与属于不同链的粒子持续长时间地相互作用。如果每个粒子支持的链间相互作用能在比单体弛豫时间长得多的时间间隔内平均,则可以识别每条链上的纠缠区域。然后,我们施加一个比纠缠运动快得多的剪切流。随着应变的增加,链条呈之字形,在缠绕区域发生弯曲。链首先被拉伸成网络,但随后发生解缠事件,导致实验观察到的应力超调。
项目成果
期刊论文数量(57)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Onuki: "Self-Organized Superfluid States in Gravity and Heat Flow"J. Low Temp. Phys.. 151. 117-126 (2000)
A. Onuki:“重力和热流中的自组织超流体状态”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Kim, R. Yamamoto: "Apparent finite-size effect in the dynamics of supercooled liquids"Phys. Rev.. E61. R41-R44 (2000)
K. Kim、R. Yamamoto:“过冷液体动力学中的表观有限尺寸效应”Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Onuki: "Ginzburg-Landau Theory of Jahn-Teller Phase Transitions"J. Phys. Soc. Jpn.. 70. 3479-3482 (2001)
A.Onuki:“Jahn-Teller 相变的 Ginzburg-Landau 理论”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Yamamoto: "Simulating particle dispersions in nematic liquid-crystal solvents"Phys. Rev. Lett.. 87. 075502-1-075502-4 (2001)
R.Yamamoto:“模拟向列液晶溶剂中的颗粒分散体”Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Yamamoto, A.Onuki: "Large scale long-lived heterogeneity in the dynamics of supercooled liquids"Int. J. Mod. Phys. C. 10. 1553-1561 (2000)
R.Yamamoto、A.Onuki:“过冷液体动力学中的大规模长寿命异质性”Int。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONUKI Akira其他文献
ONUKI Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONUKI Akira', 18)}}的其他基金
Numerical analysis of boiling phenomena
沸腾现象的数值分析
- 批准号:
23654131 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies of Rheology and Deformation Mechanism of Amorphous materials
非晶材料流变及变形机理研究
- 批准号:
15607012 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Designing cyclic peptide with target protein selection based on mixed-solvent molecular dynamics simulation
基于混合溶剂分子动力学模拟的目标蛋白选择环肽设计
- 批准号:
23H03495 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations
元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用
- 批准号:
2311372 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Acquisition of Unix Computer Cluster for Molecular Dynamics Simulation Calculations
购置 Unix 计算机集群用于分子动力学模拟计算
- 批准号:
10799081 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Molecular Dynamics simulation for association/dissociation of protein-ligand and protein-DNA complexes by advanced enhanced sampling technique
通过先进的增强采样技术对蛋白质-配体和蛋白质-DNA 复合物的结合/解离进行分子动力学模拟
- 批准号:
23K13077 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Chemoproteomics and molecular dynamics simulation-based drug discovery platforms for chemoprevention
基于化学蛋白质组学和分子动力学模拟的化学预防药物发现平台
- 批准号:
22K10489 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a fast molecular dynamics simulation method using deep learning
使用深度学习开发快速分子动力学模拟方法
- 批准号:
22K17993 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Mutation-induced drug sensitivity prediction based on long timescale molecular dynamics simulation
基于长时尺度分子动力学模拟的突变药物敏感性预测
- 批准号:
21K06510 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of reactive force-field and molecular dynamics simulation of electrode-electrolyte interfaces
电极-电解质界面反作用力场和分子动力学模拟的发展
- 批准号:
21K04650 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microscopic basis of entanglement model by molecular dynamics simulation
分子动力学模拟的纠缠模型的微观基础
- 批准号:
20K03876 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)