New development of ring theory from the view point of representation theory and its application
从表示论的角度看环理论的新发展及其应用
基本信息
- 批准号:13640024
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Toward the complete classification of Cohen-Macaulay modules over a commutative local ring, we made new progress in solving the problems on degenerations of Cohen-Macaulay modules and the problems on the family of modules of G-dimension 0.(1) Degeneration of Cohen-Macaulay modules :One can define a partial order on the set of isomorphism classes of modules by using the degeneration relation. This order is related to the Horn order that has been defined by Bongartz for modules over finite dimensional algebras. One may conjecture that the order would be generated by the degenerations of Auslander-Reiten sequences whenever the cateogry of Cohen-Macaulay modules is of fintie representation type. This conjecture claims that such an order defined geometrically could be related to the combinatorial nature of Auslander-Reiten quiver. I actually gave a complete proof of this conjecture in the case that the local ring has dimension 2. I also proved this if the local ring is an integral domain of … More dimension 1. These results are published in Journal of Algebra (2002).(2) Modules of G-dimension 0 :As one of the generalizations of classification theory of Cohen-Macaulay modules over a Gorenstein ring, it is important to consider the modules of G-dimension 0 over a general local ring. It had been thought that the category of G-dimension 0 could have similar properties to the category of Cohen-Macaulay modules. However, I made a lot of examples that disprove it. In particular, if the cube of maximal ideal of the local ring is zero, then I succeeded to give a necessary and sufficient condition for the ring to have a nontrivial module of G-dimension 0. Actually I gave a way of construction of such indecomposable modules with continuous parameter. Using this construction I have shown that the family of modules of G-dimension 0 may not be a contravariantly finite subcategory in the cateogory of finitely generated modules. These results were reported in the Workshop of NATO Scientific Program in Romania (2002), and to be published from Kluwer Press. Less
在交换局部环上Cohen-Macaulay模的完全分类方面,我们在解决Cohen-Macaulay模的退化问题和G维0模族问题方面取得了新的进展. (1)Cohen-Macaulay模的退化:人们可以通过退化关系定义模的同构类集合上的偏序。这个顺序是有关的霍恩秩序已被定义为邦加茨模有限维代数。人们可以猜想,只要Cohen-Macaulay模的范畴是有限表示型的,则该阶将由Auslander-Reiten序列的退化产生.这个猜想声称这样一个几何定义的序可能与Auslander-Reiten的组合性质有关。实际上,我在局部环的维数为2的情况下,给出了这个猜想的完整证明。我还证明了这一点,如果局部环是一个整环的 ...更多信息 维度1。这些结果发表在Journal of Algebra(2002)上。(2)G-维0模:作为Gorenstein环上Cohen-Macaulay模分类理论的推广之一,考虑一般局部环上G-维0模是很重要的。G维0的范畴被认为可以具有与Cohen-Macaulay模范畴相似的性质。特别是,当局部环的极大理想的立方为零时,我成功地给出了局部环存在G-维为0的非平凡模的一个充分必要条件。实际上,我给出了一种构造这种带连续参数的不可分解模的方法。利用这个构造,我证明了G维为0的模族在G维生成模范畴中可能不是一个逆变有限子范畴。这些结果已在罗马尼亚举行的北约科学方案讲习班(2002年)上报告,并将由Kluwer出版社出版。少
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
吉野 雄二: "Degenerations of Cohen-Macaulsy modules"第46回代数学シンポジウム報告集. 17-32 (2001)
Yuji Yoshino:“Cohen-Macaulsy 模的退化”第 46 届代数研讨会论文集 17-32 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuji Yoshino: "On degenenrations of Cohen-Macaulay modules"Journal of Algebra. 248. 272-290 (2002)
Yuji Yoshino:“论 Cohen-Macaulay 模的简并”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Mizukawa, H.-F.Yamada: "Littlewood's multiple formula for spin characters of symmetric groups"Journal of London Math.Soc.. (to appear).
H.Mizukawa、H.-F.Yamada:“对称群自旋特征的利特伍德多重公式”伦敦数学学会杂志(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuji Yoshino: "Modules of G-dimension zero over local rings with the cube of maximal ideal being zero"Proceedings of Advanced Research Workshop, NATO Science Program, Kluwer Press. (to appear). (2003)
Yuji Yoshino:“最大理想立方为零的局部环上的 G 维零模”北约科学计划高级研究研讨会论文集,Kluwer Press。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Mizukawa, H.-F.Yamada: "Littlewood' s multiple formula for spin characters of symmetric groups"Journal of London Math. Soc.. 65(2). 1-9 (2002)
H.Mizukawa、H.-F.Yamada:“Littlewood 对称群自旋特征的多重公式”伦敦数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHINO Yuji其他文献
YOSHINO Yuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHINO Yuji', 18)}}的其他基金
Study of Cohen-Macaulay modules from the viewpoint of deformation and degeneration
从变形和退化的角度研究Cohen-Macaulay模
- 批准号:
23654011 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on triangulated categories and its application to Cohen-Macaulay modules
三角范畴研究及其在Cohen-Macaulay模中的应用
- 批准号:
21340008 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of moduli of indecomposable modules and degeneration of modules
不可分解模的模和模的退化研究
- 批准号:
15340010 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
SWR1-ERECTA-MIR398模块调控拟南芥珠被发育的机理研究
- 批准号:31700279
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
SS1T_05917基因在核盘菌菌核形成中的作用及其机理研究
- 批准号:31071647
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Hardware Security Module for secure delegated Quantum Cloud Computing
用于安全委托量子云计算的硬件安全模块
- 批准号:
EP/Z000564/1 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Research Grant
Energy measurement module validation for hydrogen/natural gas blends
氢气/天然气混合物的能量测量模块验证
- 批准号:
10089313 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Collaborative R&D
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
- 批准号:
2327474 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Implementation and evaluation of an e-learning module for primary care providers to promote equitable access to lung screening for priority populations.
为初级保健提供者实施和评估电子学习模块,以促进重点人群公平地获得肺部筛查。
- 批准号:
467600 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Salary Programs
CAMO: Counterfeit Attestation MOdule for Electronics Supply Chain Tracking and Provenance
CAMO:用于电子供应链跟踪和来源的防伪认证模块
- 批准号:
2341895 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Confocal laser scanning microscope with fast fluorescence lifetime imaging module
具有快速荧光寿命成像模块的共焦激光扫描显微镜
- 批准号:
540803833 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Major Research Instrumentation
Live cell spinning disk confocal microscope with single molecule localization module
具有单分子定位模块的活细胞转盘共聚焦显微镜
- 批准号:
514497685 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Major Research Instrumentation
Reactions without walls: Droplet Reaction Module for rapid chemical synthesis (DReaM)
无壁反应:用于快速化学合成的液滴反应模块 (DReaM)
- 批准号:
2896295 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Development of an Interactive Bioethics Training Module for Healthcare Providers Treating Patients Who Need Liver Transplant for Alcohol-associated Liver Disease
为治疗酒精相关性肝病需要肝移植的患者的医疗保健提供者开发交互式生物伦理学培训模块
- 批准号:
10785093 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别: