Study of moduli of indecomposable modules and degeneration of modules

不可分解模的模和模的退化研究

基本信息

  • 批准号:
    15340010
  • 负责人:
  • 金额:
    $ 6.85万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

As a joint work with Osamu Iyama (Nagoya Univ.), we have defined the mutation as an action of braid group on the set of indecomposable objects in a general triangulated category. We have developed a general theory of mutation and have applied it to the classification problem of rigid Cohen-Macaulay modules. In particular, we succeeded to describe the perfect classification of rigid Cohen-Macaulay modules over a Veronese subring of dimension 3 and of degree 3. Through this consideration of the mutation, we are able to obtain further examples as well where we can classify the rigid Cohen-Macaulay modules. Actually the study was done by considering the maximal orthogonal subcategories in the stable category of Cohen-Macaulay modules. An investigation of the similar problem in a derived category is now in progress.We also made a study on the deformation and the degeneration of modules. And we succeeded to construct a noncommutative parameter space of the universal deformations of a module. By this, we are now able to understand well the classical obstruction theory of modules. This noncommutative deformation theory is also in progress.
在与名古屋大学的Osamu Iyama的合作中,我们将突变定义为辫群对一般三角分类中不可分解对象集合的作用。我们发展了一种突变的一般理论,并将其应用于刚性Cohen-Macaulay模的分类问题。特别地,我们成功地描述了3维3次的Veronese子带上刚体Cohen-Macaulay模的完美分类。通过这种对突变的考虑,我们能够获得进一步的例子,我们也可以对刚性Cohen-Macaulay模块进行分类。实际上,研究是通过考虑Cohen-Macaulay模稳定范畴中的极大正交子范畴来完成的。目前正在对派生类中的类似问题进行调查。我们还对模组的变形和退化进行了研究。成功地构造了一个模的泛变形的非交换参数空间。由此,我们可以很好地理解经典模阻理论。这种非交换变形理论也在研究中。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cesar A.Escobar, Rafael H.Villarreal, Yuji Yoshino: "Torsion freeness and normality of associated graded rings and Rees algebras of monomial ideals"Lisbon Conference on Commutative Algebra, Marcel Dekker's Lecture Notes in Pure and Applied Mathematics Ser
Cesar A.Escobar、Rafael H.Villarreal、Yuji Yoshino:“关联分级环和单项式理想的里斯代数的扭转自由度和正态性”里斯本交换代数会议,Marcel Dekker 的纯粹与应用数学系列讲座笔记
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Torsion freeness and normality of associated graded rings and Rees algebras of monomial ideals
相关分级环的扭转自由度和正态性以及单项式理想的里斯代数
Yuji Yoshino: "Degeneration and G-dimension of modules"Lisbon Conference on Commutative Algebra, Marcel Dekker's Lecture Notes in Pure and Applied Mathematics Series. (To appear). (2004)
Yuji Yoshino:“模的退化和 G 维”里斯本交换代数会议,Marcel Dekker 的纯粹与应用数学系列讲座笔记。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On a group graded version of BGG
BGG 的团体评分版本
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. L. Green;R. Martinez-Villa and Y. Yoshino
  • 通讯作者:
    R. Martinez-Villa and Y. Yoshino
Characterizing Cohen-Macaulay rings via Frobenius map
通过 Frobenius 贴图表征 Cohen-Macaulay 环
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHINO Yuji其他文献

YOSHINO Yuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHINO Yuji', 18)}}的其他基金

Study of Cohen-Macaulay modules from the viewpoint of deformation and degeneration
从变形和退化的角度研究Cohen-Macaulay模
  • 批准号:
    23654011
  • 财政年份:
    2011
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on triangulated categories and its application to Cohen-Macaulay modules
三角范畴研究及其在Cohen-Macaulay模中的应用
  • 批准号:
    21340008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New development of ring theory from the view point of representation theory and its application
从表示论的角度看环理论的新发展及其应用
  • 批准号:
    13640024
  • 财政年份:
    2001
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Studies on generic Cohen-Macaulay modules and their applications
通用Cohen-Macaulay模及其应用研究
  • 批准号:
    23K12954
  • 财政年份:
    2023
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis of the Topological Structure of the functor category of Cohen-Macaulay modules and its applications to representation types of algebras
Cohen-Macaulay模函子范畴的拓扑结构分析及其在代数表示类型中的应用
  • 批准号:
    21K03213
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure Analysis of a Category of Cohen--Macaulay Modules by the Representation Scheme
一类Cohen-Macaulay模的表示方案结构分析
  • 批准号:
    18K13399
  • 财政年份:
    2018
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on Cohen-Macaulay modules by degeneration theory and its applications to representation types of algebras
简并理论研究Cohen-Macaulay模及其在代数表示类型中的应用
  • 批准号:
    15K17527
  • 财政年份:
    2015
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies of maximal Cohen-Macaulay modules over graded hypersurfaces
分级超曲面上最大 Cohen-Macaulay 模的研究
  • 批准号:
    26400056
  • 财政年份:
    2014
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Cohen-Macaulay modules from the viewpoint of deformation and degeneration
从变形和退化的角度研究Cohen-Macaulay模
  • 批准号:
    23654011
  • 财政年份:
    2011
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies of Cohen-Macaulay modules over Gorenstein local rings
Gorenstein 局部环上的 Cohen-Macaulay 模的研究
  • 批准号:
    22740008
  • 财政年份:
    2010
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on triangulated categories and its application to Cohen-Macaulay modules
三角范畴研究及其在Cohen-Macaulay模中的应用
  • 批准号:
    21340008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Classification of maximal Cohen-Macaulay modules
最大 Cohen-Macaulay 模的分类
  • 批准号:
    5372084
  • 财政年份:
    2002
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Priority Programmes
VPW: Prime Ideals and Indecomposable Cohen - Macaulay Modules (Algebra)
VPW:素理想和不可分解科恩 - 麦考利模块(代数)
  • 批准号:
    9250116
  • 财政年份:
    1992
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了