Geometry of the Laplace operator
拉普拉斯算子的几何
基本信息
- 批准号:13640069
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kumura studied the relationship between analytic inequalities of noncompact Riemannian manifolds or compact Riemannian manifolds with boundary and its geometric information. To be concrete, he gave an intrinsic ultracontractive bound for compact Riemannian manifolds with nonconvex boundary, using their inner geometric property, by the arguments of Davies - Simon 1984. In order to do so, two inequalities, Hardy and Sobolev should be prepared. These inequalities are important. Indeed, for example, these induce an upper bound of the Neumann heat kernel, the boundary behavior of the Dirichlet heat kernel and Green kernel and the first gap of the Dirichlet eigenvalue. As for results on noncompact manifolds, the following results is obtained : generally, on noncompact Riemannian manifolds, the differential operator, Laplacian is defined, and its spectrum is closely related to the geometry of the manifolds and studied by many authors from various points of view. In particular, the essential spectrum of the Laplacian of noncompact complete Riemannian manifolds depends only on the geometry of the infinity of manifolds. Kumura considered the average of curvatures near the infinity with respect to some measure and studied its convergence and the essential spectrum of the Laplacian. He generalized a results of Donnelly and his own one.Kasue studied the relationship between convergence of manifolds and Dirichlet forms, Sato studied the Jorgensen group, Akutagawa studied the Yamabe invariant and Okumura studied Teichmuller space from the global analytic viewpoint.
Kumura研究了非紧黎曼流形和紧黎曼流形的解析不等式与其几何信息之间的关系。具体地说,他利用黎曼流形的内在几何性质,通过Davies - Simon 1984的论证,给出了具有非凸边界的紧致黎曼流形的一个内在超压缩界。为了做到这一点,两个不等式,哈代和Sobolev应准备。这些不平等很重要。事实上,例如,这些诱导的上界的诺依曼热核,边界行为的狄利克雷热核和绿色内核和第一间隙的狄利克雷特征值。关于非紧流形的结果,得到了如下结果:一般地,在非紧黎曼流形上,定义了微分算子Laplacian,它的谱与流形的几何密切相关,许多作者从不同的角度研究了它。特别地,非紧完备黎曼流形的拉普拉斯算子的本质谱仅依赖于无穷流形的几何。Kumura考虑了无穷远点曲率的平均值,并研究了它的收敛性和Laplacian的本质谱。他推广了结果唐纳利和他自己的一个。Kasue研究了收敛之间的关系的流形和狄利克雷形式,佐藤研究了乔根森群,芥川研究了Yamabe不变量和Okumura研究Teichmuller空间从全球分析的观点。
项目成果
期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Akutagawa: "Notes on the relative Yamabe invariant"Differential Geometry, Josai Mathematical Monographs. 3. 105-113 (2001)
K.芥川:《相对山边不变量的注释》微分几何,城西数学专着。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. 173-179 (2001)
Y.Okumura:“提升问题及其在黎曼曲面中的应用”第八届国际复分析会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Kasue: "Convergence of measured metric spaces and energy forms (Japanese)"Suugaku. 55-1. 20-36
A. Kasue:“测量度量空间和能量形式的收敛(日语)”Suugaku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Sato: "The Jorgensen number of the Whitehead link"RIMS Kokyuroku, Kyoto Univ.. 1270. 77-83 (2002)
H. Sato:“Whitehead 链接的 Jorgensen 数”RIMS Kokyuroku,京都大学. 1270. 77-83 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "Jorgensen groups and Picard group"Proc. The Third ISAAC International Congress, Academic Scientific Publ.. (刊行予定). (2003)
Hiroki Sato:“Jorgensen 群和 Picard 群”,第三届 ISAAC 国际大会,学术科学出版物(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUMURA Hironori其他文献
KUMURA Hironori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUMURA Hironori', 18)}}的其他基金
Geometry of ends, spectrum of Laplacian, scattering, and inverse problem
末端几何、拉普拉斯谱、散射和反演问题
- 批准号:
21540215 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of manifolds at infinity and the analytic property
无穷远流形的几何及其解析性质
- 批准号:
18540212 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Degenerate Diffusions and Related Heat Kernel Estimates
简并扩散和相关的热核估计
- 批准号:
1855523 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
CAREER: Heat kernel measures in infinite dimensions
职业:无限维度的热核测量
- 批准号:
1255574 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Heat kernel and Riesz transform on non-compact metric measure spaces
非紧度量测度空间上的热核和 Riesz 变换
- 批准号:
DP130101302 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Heat Kernel Approach in Financial Engineering of New Generation
新一代金融工程中的热核方法
- 批准号:
25285102 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heat kernel and geometric inequalities on spaces with bottle-neck structure
瓶颈结构空间上的热核和几何不等式
- 批准号:
25800034 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fisher information geometry of Riemannian manifolds and Poisson kernel, heat kernel
黎曼流形和泊松核、热核的 Fisher 信息几何
- 批准号:
24540065 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heat kernel methods applied to zeta functions of Ihara, Rankin-Selberg, and Selberg
应用于 Ihara、Rankin-Selberg 和 Selberg zeta 函数的热核方法
- 批准号:
1104115 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Heat kernel estimates and applications
热核估计和应用
- 批准号:
1004771 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Applications of Heat Kernel Techniques to Zeta Functions of Quotients of Symmetric Spaces and of Graphs
热核技术在对称空间商和图 Zeta 函数中的应用
- 批准号:
0802626 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant














{{item.name}}会员




