Applications of Heat Kernel Techniques to Zeta Functions of Quotients of Symmetric Spaces and of Graphs
热核技术在对称空间商和图 Zeta 函数中的应用
基本信息
- 批准号:0802626
- 负责人:
- 金额:$ 13.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The grant proposal describes several directions ofresearch to be undertaken by Jay Jorgenson and his co-authorswhich, somewhat generally, build on his prior investigation ofnumber theoretic applications of heat kernel and heat kernelanalysis. Previous work by Jorgenson with J\"urg Kramer focus onanalytic aspects of Arakelov theory. Continuing this work,Jorgenson and Kramer recently established a relation betweencertain L-functions attached to non-holomorphic Maass forms andL-functions attached to holomorphic forms of weight two. Part ofthe proposed research describes work to be carried out byJorgenson and Kramer which studies the application of theirL-function relation to questions involving bounds of Fouriercoefficients of Maass forms. Additionally, the Jorgenson andKramer collaboration has resulted in projects involving theinter-relations between hyperbolic, parabolic, and ellipticEisenstein series. The research proposal describes a number ofproblems which remain in this direction. In collaboration withGautam Chinta and Anders Karlsson, Jorgenson has initiated aprogram of study of heat kernels and analytic number theoryassociated to totally disconnected spaces, including discrete toriand Cayley graphs associated to finite groups. The proposaloutlines further questions to be investigated by Jorgenson in hisjoint research efforts with Chinta and Karlsson.The heat kernel, and heat kernel analysis, is presentin many areas of mathematics and related fields. For example, onecomponent of the joint research undertaken by Chinta, Jorgensonand Karlsson is to study determinants of certain matricesassociated to graphs associated to finite groups. Going back asfar as Kirckhoff in 1847, connections have been known whichestablish relations between these determinants and otherdisciplines, such as electrical engineering and chemistry. Morerecently, one can say that a considerable amount of financialmathematics and financial engineering is built on heat kernelanalysis. In addition to specific research problems posed byJorgenson which relate to finance, his teaching duties includecurricular development activities involving financial engineeringand bio-statistics courses, all of which benefit from Jorgenson'sresearch program. Finally, the proposal describes a wide range ofproblems which are assessable to students of many levels, rangingfrom advanced undergraduate students to recent Ph.D.'s.
该拨款提案描述了几个方向的研究将进行杰伊乔根森和他的co-authorswhich,有点一般,建立在他以前的调查数论应用的热核和热核分析。Jorgenson和Jurg克雷默以前的工作集中在Arakelov理论的分析方面。 继续这项工作,Jorgenson和克雷默最近建立了一个关系betweentain L-函数重视非全纯的马斯形式和L-函数重视全纯形式的重量二。 部分拟议的研究介绍了工作进行乔根森和克雷默研究的应用他们的L-函数关系的问题,涉及边界的傅立叶系数的马斯形式。此外,Jorgenson和Kramer的合作导致了涉及双曲,抛物线和椭圆艾森斯坦级数之间的相互关系的项目。 研究建议描述了一些问题仍然在这个方向。 在合作与高塔姆Chinta和安德斯Karlsson,Jorgenson发起了一个程序的研究热核和解析数论相关的完全不连通的空间,包括离散tori和凯莱图相关的有限群。 Jorgenson在他与Chinta和Karlsson的联合研究工作中,提出了进一步的问题。热核和热核分析在数学和相关领域的许多领域都存在。 例如,一个组成部分的联合研究所承担的钦塔,乔根森和卡尔森是研究决定因素的某些matrices相关的图形相关联的有限群体。 追溯到1847年Kirckhoff,这些决定因素与其他学科(如电气工程和化学)之间的联系已经被人们所知。 最近,人们可以说相当数量的金融数学和金融工程是建立在热核分析的基础上的。 除了由乔根森提出的与金融有关的具体研究问题外,他的教学职责还包括涉及金融工程和生物统计学课程的课外发展活动,所有这些都受益于乔根森的研究计划。 最后,该建议描述了一系列广泛的问题,这些问题对许多层次的学生都是可评估的,从高年级的本科生到最近的博士生。's.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Jorgenson其他文献
Extension of analytic number theory and the theory of regularized harmonic series from Dirichlet series to Bessel series
- DOI:
10.1007/bf01445243 - 发表时间:
1996-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Jay Jorgenson;Serge Lang - 通讯作者:
Serge Lang
Enriques Surfaces, Analytic Discriminants, and Borcherds's Φ Function
- DOI:
10.1007/s002200050267 - 发表时间:
1998-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Jay Jorgenson;Andrey Todorov - 通讯作者:
Andrey Todorov
Jay Jorgenson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Jorgenson', 18)}}的其他基金
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Heat kernel methods applied to zeta functions of Ihara, Rankin-Selberg, and Selberg
应用于 Ihara、Rankin-Selberg 和 Selberg zeta 函数的热核方法
- 批准号:
1104115 - 财政年份:2011
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Analytic questions motivated by L functions, Eisenstein series, automorphic forms, and trace formulae
由 L 函数、爱森斯坦级数、自同构形式和迹公式引发的分析问题
- 批准号:
0503669 - 财政年份:2005
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Heat Kernel Analysis and Zeta Functions on Quotients of Symmetric Spaces
对称空间商的热核分析和 Zeta 函数
- 批准号:
0071363 - 财政年份:2000
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9796336 - 财政年份:1997
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9622535 - 财政年份:1996
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularized Products, Heat Kernal Analysis and Analytic Number Theory
数学科学:正则化积、热核分析和解析数论
- 批准号:
9307023 - 财政年份:1993
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905661 - 财政年份:1989
- 资助金额:
$ 13.17万 - 项目类别:
Fellowship Award
相似国自然基金
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
- 批准号:50676006
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Degenerate Diffusions and Related Heat Kernel Estimates
简并扩散和相关的热核估计
- 批准号:
1855523 - 财政年份:2019
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
CAREER: Heat kernel measures in infinite dimensions
职业:无限维度的热核测量
- 批准号:
1255574 - 财政年份:2013
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Heat kernel and Riesz transform on non-compact metric measure spaces
非紧度量测度空间上的热核和 Riesz 变换
- 批准号:
DP130101302 - 财政年份:2013
- 资助金额:
$ 13.17万 - 项目类别:
Discovery Projects
Heat Kernel Approach in Financial Engineering of New Generation
新一代金融工程中的热核方法
- 批准号:
25285102 - 财政年份:2013
- 资助金额:
$ 13.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heat kernel and geometric inequalities on spaces with bottle-neck structure
瓶颈结构空间上的热核和几何不等式
- 批准号:
25800034 - 财政年份:2013
- 资助金额:
$ 13.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fisher information geometry of Riemannian manifolds and Poisson kernel, heat kernel
黎曼流形和泊松核、热核的 Fisher 信息几何
- 批准号:
24540065 - 财政年份:2012
- 资助金额:
$ 13.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heat kernel methods applied to zeta functions of Ihara, Rankin-Selberg, and Selberg
应用于 Ihara、Rankin-Selberg 和 Selberg zeta 函数的热核方法
- 批准号:
1104115 - 财政年份:2011
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Heat kernel estimates and applications
热核估计和应用
- 批准号:
1004771 - 财政年份:2010
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Geometric property of the Gaussian estimate of the gradient of the heat kernel
热核梯度高斯估计的几何性质
- 批准号:
18740084 - 财政年份:2006
- 资助金额:
$ 13.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)