The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation

聚焦非线性薛定谔方程的半经典极限

基本信息

项目摘要

NSF Award Abstract - DMS-0103909Mathematical Sciences: The Semiclassical Limit of the Focusing Nonlinear Schroedinger EquationAbstract0103909 MillerThis project addresses the behavior of solutions of the focusing nonlinear Schroedinger equation in the singular semiclassical limit, with particular attention paid to solutions that are tied to definite given initial data. Specific research goals include (i) generalizing a steepest-descents procedure for matrix Riemann-Hilbert problems to recover asymptotics of the initial-value problem for general real-analytic and oscillatory-analytic initial data, (ii) computing rigorous spectral asymptotics for the nonselfadjoint Zakharov-Shabat operator and taking estimates of the error into account in the inverse-scattering problem, (iii) studying sets of minimal weighted Green's capacity in the upper half-plane and relating them solidly to semiclassical asymptotics, and (iv) determining the sensitivity of the asymptotics to the presence of singularities in the data and also robustness to structural perturbations. The analysis will employ numerical methods, careful asymptotic spectral analysis of a family of nonselfadjoint differential operators, and potential-theoretic aspects of functional and complex analysis.The focusing nonlinear Schroedinger equation is a ubiquitous model equation for the propagation of waves of many different kinds (water waves, light waves, etc.) in the simultaneous presence of nonlinear effects that can "self-amplify" the waves and "dispersion" which can pull the waves apart. In particular, it is a tested and accepted model for the transmission of lightwave pulses along certain types of glass optical fibers. This project will produce new understanding of this model equation relevant to situations where the coefficient of the dispersive term in the equation is relatively small, or alternatively, nonlinear processes dominate the evolution of broad disturbances for short times. "Dispersion-shifted" optical fibers currently being installed in many modern telecommunication systems provide an environment where the effects of dispersion and nonlinearity are present in precisely such a skewed proportion. The results of this project will be likely to influence the analysis and design of the next generation of high-speed optical telecommunications systems.
NSF Award Abstract - DMS-0103909 Mathematical Sciences:The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation摘要0103909米勒本项目研究聚焦非线性薛定谔方程在奇异半经典极限下的解的行为,特别关注与给定初始数据相关联的解。 具体的研究目标包括:(i)推广矩阵Riemann-Hilbert问题的最速下降过程,以恢复一般实解析和解析初始数据的初值问题的渐近性,(ii)计算非自伴Zakharov-Shabat算子的严格谱渐近性,并考虑逆散射问题中的误差估计,(iii)研究上半平面中的最小加权绿色容量集,并将它们与半经典渐近性牢固地联系起来,以及(iv)确定渐近性对数据中奇异点的存在的敏感性以及对结构扰动的鲁棒性。 分析将采用数值方法,仔细渐近谱分析的一个家庭的非自伴微分算子,和潜在的理论方面的功能和复杂的analysis.The聚焦非线性薛定谔方程是一个普遍存在的模型方程的传播波的许多不同种类(水波,光波等)。在同时存在的非线性效应,可以“自我放大”的波和“色散”,可以把波分开。 特别是,它是一个测试和接受的模型传输光波脉冲沿着某些类型的玻璃光纤。 这个项目将产生新的理解,这个模型方程的色散项的系数在方程中的情况下,是相对较小的,或者,非线性过程占主导地位的广泛的扰动的演变短的时间。 目前安装在许多现代电信系统中的“色散位移”光纤提供了一种环境,其中色散和非线性的影响正好以这种偏斜的比例存在。 该项目的结果将可能影响下一代高速光通信系统的分析和设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Miller其他文献

Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.
非麻醉豚鼠过敏原激发后的早期和晚期支气管收缩。
Mobilizing the Consumer
动员消费者
  • DOI:
    10.1177/026327697014001001
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Miller;N. Rose
  • 通讯作者:
    N. Rose
Public opinion of alcohol industry corporate political activities
酒类行业企业政治活动舆情
Accounting, culture, and the state
会计、文化和国家
Epistaxis in COVID positive ICU patients, implications, and future interventions
  • DOI:
    10.1016/j.rmed.2024.107851
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Clark;Kristin Sheehan;Samantha Fabian;Timothy Immelman;Connie Liu;John Clinger;Peter Miller
  • 通讯作者:
    Peter Miller

Peter Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Miller', 18)}}的其他基金

Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
  • 批准号:
    2204896
  • 财政年份:
    2022
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
A Study of Wave Patterns
波形研究
  • 批准号:
    1812625
  • 财政年份:
    2018
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
ShellEye-DEMO: Satellite monitoring for shellfish and finfish aquaculture: Domain expanded; Enhanced resolution; Marine insurance; Other species
ShellEye-DEMO:贝类和有鳍鱼类水产养殖卫星监测:领域扩大;
  • 批准号:
    NE/P011004/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Research Grant
Applied Analysis for Integrable Nonlinear Waves
可积非线性波的应用分析
  • 批准号:
    1513054
  • 财政年份:
    2015
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
ShellEye: Satellite-based water quality bulletins for shellfish farms to support management decisions
ShellEye:贝类养殖场基于卫星的水质公告,支持管理决策
  • 批准号:
    BB/M026698/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Research Grant
Frontiers in Asymptotic Analysis for Integrable Nonlinear Waves
可积非线性波渐近分析前沿
  • 批准号:
    1206131
  • 财政年份:
    2012
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Testing Information and Communication Technology (ICT) Recall Aids for Surveys of Personal Networks
博士论文研究:测试个人网络调查的信息和通信技术 (ICT) 回忆辅助工具
  • 批准号:
    1246942
  • 财政年份:
    2012
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic (PML Sections)
FASTNEt - 东北大西洋倾斜地形的通量(PML 部分)
  • 批准号:
    NE/I030151/1
  • 财政年份:
    2011
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Research Grant
Asymptotic Problems in Nonlinear Waves and Beyond
非线性波及其以外的渐近问题
  • 批准号:
    0807653
  • 财政年份:
    2008
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
  • 批准号:
    0354373
  • 财政年份:
    2004
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
OppAttune - Countering Oppositional Political Extremism Through Attuned Dialogue: Track, Attune, Limit
OppAttune - 通过协调对话对抗反对派政治极端主义:跟踪、协调、限制
  • 批准号:
    10071909
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    EU-Funded
Exploring the Function to Show the Limit of Log-space Computation Models
探索显示对数空间计算模型极限的函数
  • 批准号:
    23K10981
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
  • 批准号:
    10526155
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
Designing agricultural landscapes to limit zoonotic disease risk in The Gambia
设计农业景观以限制冈比亚人畜共患疾病风险
  • 批准号:
    2889428
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
GWMODELS. Next-generation models of gravitational-wave sources: harnessing the small-mass-ratio limit
GW模型。
  • 批准号:
    EP/Y008251/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Research Grant
A study of the factors contributing to young carers' well-being, and an examination of the care limit point using sleep as an indicator.
研究影响年轻护理人员福祉的因素,并以睡眠为指标检查护理极限点。
  • 批准号:
    23K12643
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit
职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测
  • 批准号:
    2236997
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了