Information separation via phasor neural networks and its application
相量神经网络信息分离及其应用
基本信息
- 批准号:13650402
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research was performed to develop the artificial neural network models for explaining and resolving the mammalian brain function. We proposed the covariance field neural network model which is a natural extension of the classical analogue neural network model, and gives a mean field approximation to Markov random fields. The covariance field neural network can represent the covariance of spike timing as the phase difference, which is important in brain information processing, and can perform information processing based on spike timing. As a mean field approximation it gives much better approximation accuracy for Markov random fields even for the large weight strength compared with the naive mean field model. We performed computer experiments to support this. We also applied this model to image segmentation, and confirmed the segmentation capability with phase-difference. We proposed the mean field learning for Boltzmann machine, and performed some fundamental experiments to confirm the quick training speed for the phase.On the other hand, we proposed the efficient learning methods for neural netoworks, especially for the recently highlighted support vector machine(SVM). We extended SVM learning to the efficient multi-class algorithm, and apply the second order cone programming method to SVM learning. In addition we proposed the maximal margin classifier based on the geometric method, which behaves faster than the quick SVM known as SMO. Finally we proposed a new learning machine based on the kernel PCA, which can automatically determine the kernel parameter so that it can realize the no free parameter learning machine.
本研究旨在建立解释和解析哺乳动物脑功能的人工神经网络模型。提出了协方差场神经网络模型,它是经典模拟神经网络模型的自然推广,并给出了马尔可夫随机场的平均场近似。协方差场神经网络可以将脑电锋电位时序的协方差表示为相位差,这在脑信息处理中具有重要意义,可以进行基于锋电位时序的信息处理。作为一种平均场近似,它给出了更好的近似精度马尔可夫随机场相比,即使是大的重量强度的朴素平均场模型。我们进行了计算机实验来支持这一点。将该模型应用于图像分割,验证了相位差法的分割能力。本文提出了Boltzmann机的均值场学习方法,并通过实验验证了该方法在相位上的快速学习能力;另一方面,本文提出了神经网络的有效学习方法,特别是支持向量机(SVM)的有效学习方法。将SVM学习扩展为高效的多类分类算法,并将二阶锥规划方法应用于SVM学习。此外,我们提出了基于几何方法的最大间隔分类器,它的行为比快速SVM称为SMO更快。最后提出了一种新的基于核主成分分析的学习机,它可以自动确定核参数,从而实现无自由参数学习机。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
I.V.Mayer, H.Takahahi, K.Sakamoto: "Imaginary Motor Movement EEG Classification by Accumulative-Autocorrelation-Pulse"Electromyography and Clinical Neurophsiology. 41. 159-169 (2001)
I.V.Mayer、H.Takahahi、K.Sakamoto:“通过累积自相关脉冲进行想象运动脑电图分类”肌电图和临床神经生理学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rameswer Debnath: "A New Approach to Structural Learning of Neural Networks"IEICE Trans.Fundamentals. (to appear). (2004)
Rameswer Debnath:“神经网络结构学习的新方法”IEICE Trans.Fundamentals。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
向山 学: "幾何学的学習アルゴリズムによる最大マージン識別法"電子情報通信学会技術研究報告. NC2003-114. 37-42 (2003)
Manabu Mukaiyama:“使用几何学习算法的最大余量识别方法”IEICE NC2003-114(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
野ヶ山尊秀: "マルチクラスサポートベクトルマシンの実現"電子情報通信学会全国大会. 2002/03. 51 (2002)
Takahide Nogayama:“多类支持向量机的实现”IEICE 全国会议 2002/03。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takahide Nogayama: "Generalization of kernel PCA and Automatic Paremeter Tuning"The 8th Australian and New Zealand Intelligent Information Systems Conference. 173-178 (2003)
Takahide Nogayama:“内核 PCA 的泛化和自动参数调优”第八届澳大利亚和新西兰智能信息系统会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAHASHI Haruhisa其他文献
TAKAHASHI Haruhisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAHASHI Haruhisa', 18)}}的其他基金
Generative model in a wide class of distribution and its application
广义分布中的生成模型及其应用
- 批准号:
24500165 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning via fusion of discriminative and mean field models and its application to image recognition
通过融合判别模型和平均场模型的机器学习及其在图像识别中的应用
- 批准号:
21500213 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The second order mean field approximation of graphical models and its application to Bayesian inference
图模型的二阶平均场逼近及其在贝叶斯推理中的应用
- 批准号:
17500088 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time speech recognition and model selection via recurrent neural networks
通过循环神经网络进行实时语音识别和模型选择
- 批准号:
06650401 - 财政年份:1994
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mamalian-like neural networks for dynamic information processing and its learning algorithm
用于动态信息处理的类哺乳动物神经网络及其学习算法
- 批准号:
04805032 - 财政年份:1992
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Development and Applications of Learning Algorithms for Neural Networks
神经网络学习算法的开发和应用
- 批准号:
02650235 - 财政年份:1990
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Ultracold quantum gases in optical lattices - Structure and excitations beyond the mean-field approximation (C06)
光学晶格中的超冷量子气体 - 超出平均场近似的结构和激发(C06)
- 批准号:
201295474 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Collaborative Research Centres
The second order mean field approximation of graphical models and its application to Bayesian inference
图模型的二阶平均场逼近及其在贝叶斯推理中的应用
- 批准号:
17500088 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A USE OF MEAN FIELD APPROXIMATION IN MEDIA INFORMATION PROCESSING USING MARKOV MODEL
平均场近似在马尔可夫模型媒体信息处理中的应用
- 批准号:
10650370 - 财政年份:1998
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear cosmic structure formation in the mean-field approximation
平均场近似中的非线性宇宙结构形成
- 批准号:
528166846 - 财政年份:
- 资助金额:
$ 2.24万 - 项目类别:
Research Grants














{{item.name}}会员




