The second order mean field approximation of graphical models and its application to Bayesian inference
图模型的二阶平均场逼近及其在贝叶斯推理中的应用
基本信息
- 批准号:17500088
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Markov random field (MRF) and its discriminative version have been shown useful for both biological analysis and practical applications. In biological analysis, the debate on neuronal correlations is now continuing in which the analysis of the probability P( r| s) of the neuronal response r conditional on a stimulus s is required, which could be modeled with MRF. In this context the importance of a parametric model for analyzing correlations by modeling joint probability P(r, s) is shown using Gibbs distribution.Several approximation techniques have been proposed for computing state probabilities of MRFs, CRFs, including belief propagation, which is not applicable for MRFs in a general situation. Mean field approximation (MRF) is known as only the generally applicable approximation technique at present.To improve the accuracy of the mean-field approximation several advanced techniques have been proposed. Since the better accuracy we attain, the more intricate equations we get into, it … More becomes hard to know the efficient training procedure. In fact the training procedure is known only for the naive mean-field approximation (NMF), which is not so sufficient for the approximation accuracy.The achievement of this research is to have refined the mean field approximation to alleviate both the testing and learning time, and to have shown the efficient learning scheme for object recognition with the variational phasor mean field model (VPMF). The striking result is that our learning scheme shows comparable testing performance with SVM, despite using much smaller size of training data, and in addition the detection time and the training time are much smaller than SVM based face detection.Performance evaluation of VPMF is given for approximation accuracy, the local minima, and a face recognition problems. We have also attained the conclusion that the correlation of population coding in neural networks is more powerful than just using only the mean firing rate.Performance evaluation of VPMF is given for approximation accuracy, the local minima, and a face recognition problems. Less
马尔可夫随机场(MRF)及其判别版本已显示用于生物分析和实际应用。在生物学分析中,关于神经元相关性的争论现在正在继续,在该辩论中,需要在刺激上进行有条件的神经元反应r的概率p(r | s)的分析,这可以用MRF进行建模。在这种情况下,使用Gibbs分布显示了参数模型对分析相关性的重要性。已提出了几个近似技术,用于计算MRFS的状态可能性,包括CRFS,包括信仰传播,这在一般情况下不适用于MRF。平均场近似(MRF)目前仅是通常适用的近似技术。为了提高平均场近似的准确性,已经提出了几种高级技术。由于我们获得的精度越好,因此我们进入的方程式越多,它就……更难知道有效的训练程序。实际上,训练程序仅对幼稚的平均场近似(NMF)知名,这不足以使其近似准确性。这项研究的实现是完善了平均场近似,以减轻测试和学习时间,并通过变异相位器平均场模型(VPMF)展示了有效的对象识别学习方案。惊人的结果是,我们的学习方案与SVM显示了可比的测试性能,使用训练数据尺寸要小得多的dospite,此外,检测时间和训练时间远小于基于SVM的面部检测。VPMF的绩效评估是为了近似的精度,局部最小值,以及面部识别问题。我们还得出了一个结论,即神经网络中人口编码的相关性比仅使用平均点火率更强大。给出了VPMF的绩效评估,以近似准确性,局部最小值和面部识别问题。较少的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational phasor mean field model for object recognition
- DOI:10.1109/isccsp.2008.4537275
- 发表时间:2008-03
- 期刊:
- 影响因子:0
- 作者:Haruhisa Takahashi
- 通讯作者:Haruhisa Takahashi
One-class SVMを用いた顕微鏡画像からの粒子検出と計数
使用一类 SVM 从显微图像中检测和计数颗粒
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:久場日暖;堀田 一弘;高橋治久
- 通讯作者:高橋治久
Phasor Mean Field Model for Image Processing
用于图像处理的相量平均场模型
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H.Hamano;F.Fukumoto;Haruhisa Takahashi
- 通讯作者:Haruhisa Takahashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAHASHI Haruhisa其他文献
TAKAHASHI Haruhisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAHASHI Haruhisa', 18)}}的其他基金
Generative model in a wide class of distribution and its application
广义分布中的生成模型及其应用
- 批准号:
24500165 - 财政年份:2012
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning via fusion of discriminative and mean field models and its application to image recognition
通过融合判别模型和平均场模型的机器学习及其在图像识别中的应用
- 批准号:
21500213 - 财政年份:2009
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information separation via phasor neural networks and its application
相量神经网络信息分离及其应用
- 批准号:
13650402 - 财政年份:2001
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time speech recognition and model selection via recurrent neural networks
通过循环神经网络进行实时语音识别和模型选择
- 批准号:
06650401 - 财政年份:1994
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mamalian-like neural networks for dynamic information processing and its learning algorithm
用于动态信息处理的类哺乳动物神经网络及其学习算法
- 批准号:
04805032 - 财政年份:1992
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Development and Applications of Learning Algorithms for Neural Networks
神经网络学习算法的开发和应用
- 批准号:
02650235 - 财政年份:1990
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
- 批准号:
1262457 - 财政年份:2014
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
- 批准号:
1262469 - 财政年份:2014
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Development of Conditional Simulation Techniques and Its Engineering
条件模拟技术及其工程的发展
- 批准号:
05555131 - 财政年份:1993
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)