Real-time speech recognition and model selection via recurrent neural networks

通过循环神经网络进行实时语音识别和模型选择

基本信息

  • 批准号:
    06650401
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

We performed the study on the theme of this report by intensively investigating the theoretical base of learning. In the first year we developed a very simple recurrent neural network (VSRN) architecture which is a three-layr network and contains only self-loop recurrent connections in the hidden layr. The role of the recurrent connection is explained by the network dynamics and its function will be acquired by learning from finite examples like a mamalian action. Through the learning process some characteristic functions observed in the mamalian auditory systems are founed automatically acquired by the network. In the second year we investigated mainly the theoretical framework of how our network can learn well by proposing a new method for analysing the generalization performance. To achieve this, we undertake a comparison of learning and hypothesis testing, which leads to a novel notion of regular interpolation dimension and an ill-disposed learning algorithm that produces ill-disposed hypotheses. This unites the learning and the hypothesis testing in a common viewpoint such that the base of hypothesis testing inequalities can be directly used for estimating ill-disposed hypotheses on training examples. The regular interpolation dimension is no greater than the number of modifiable system parameters. We analyze the ill-disposed learning algorithm both in the PAC learning model and in an average-case setting to obtain more explicit bounds on learning curves and sample complexity in terms of the regular interpolation dimension, than those in terms of the VC dimension. The results are applied and extended to the other algorithm such as a Gibbs algorithm and the inconsistent learning to obtain explicit bound of the learning curves and sample complexity.
我们围绕本报告的主题进行了深入研究学习的理论基础。第一年,我们开发了一个非常简单的循环神经网络(VSRN)架构,它是一个三层网络,并且在隐藏层中仅包含自循环循环连接。循环连接的作用是通过网络动力学来解释的,其功能将通过从有限的例子(如哺乳动物的动作)中学习来获得。通过学习过程,在哺乳动物听觉系统中观察到的一些特征功能是由网络自动获取的。第二年,我们主要研究了网络如何良好学习的理论框架,提出了一种分析泛化性能的新方法。为了实现这一目标,我们对学习和假设检验进行了比较,从而产生了规则插值维度的新概念和产生不良假设的不良学习算法。这将学习和假设检验统一在一个共同的观点中,使得假设检验不等式的基础可以直接用于估计训练样本上的不良假设。常规插值维数不大于可修改的系统参数个数。我们分析了 PAC 学习模型和平均情况设置中的不良学习算法,以获得比 VC 维度更明确的学习曲线和样本复杂度的界限。结果被应用并扩展到其他算法,例如吉布斯算法和不一致学习,以获得学习曲线和样本复杂度的明确界限。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
顧漢 忠: "概念学習における学習曲線の評価" 信学技報 ニューロコンピューティング. NC95-57. 63-70 (1995)
顾汉忠:“概念学习中的学习曲线评估”IEICE 神经计算技术报告(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Honzhong Gu: "Exporential or Polybnomial Learning Curves ? A case Study" Proc.1995 International Symposium or NOLTA. 2B-12. 243-246 (1995)
Honzhong Gu:“指数或多项式学习曲线?案例研究”Proc.1995 国际研讨会或 NOLTA。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Gu Hanzhong: "Towards More Practical Average Bounds on Supervised Learning." IEEE Transactions on Neural Networks. 21 (1996)
顾汉中:“监督学习走向更实用的平均界限。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Gu H,Takahashi H.: "Self-Averaging and Sample Complexity." Technical Report of IEICE. NC-95-67. (1996)
Gu H,Takahashi H.:“自平均和样本复杂性。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
顧漢忠: "概念学習における学習曲線の評価." 信学技報. NC95-57. 63-70 (1995)
顾汉中:“概念学习中的学习曲线评估。” NC95-57(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Haruhisa其他文献

TAKAHASHI Haruhisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Haruhisa', 18)}}的其他基金

Generative model in a wide class of distribution and its application
广义分布中的生成模型及其应用
  • 批准号:
    24500165
  • 财政年份:
    2012
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning via fusion of discriminative and mean field models and its application to image recognition
通过融合判别模型和平均场模型的机器学习及其在图像识别中的应用
  • 批准号:
    21500213
  • 财政年份:
    2009
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The second order mean field approximation of graphical models and its application to Bayesian inference
图模型的二阶平均场逼近及其在贝叶斯推理中的应用
  • 批准号:
    17500088
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information separation via phasor neural networks and its application
相量神经网络信息分离及其应用
  • 批准号:
    13650402
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mamalian-like neural networks for dynamic information processing and its learning algorithm
用于动态信息处理的类哺乳动物神经网络及其学习算法
  • 批准号:
    04805032
  • 财政年份:
    1992
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development and Applications of Learning Algorithms for Neural Networks
神经网络学习算法的开发和应用
  • 批准号:
    02650235
  • 财政年份:
    1990
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326894
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
  • 批准号:
    2321426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Unlocking spiking neural networks for machine learning research
解锁用于机器学习研究的尖峰神经网络
  • 批准号:
    EP/V052241/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Fellowship
Applications of machine learning and neural networks to improve SNO+ data analysis
应用机器学习和神经网络改进 SNO 数据分析
  • 批准号:
    546735-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Spectral encoding and machine learning algorithms for photonic convolutional neural networks
光子卷积神经网络的光谱编码和机器学习算法
  • 批准号:
    572906-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Construction of stochastic superconductor neural networks towards ultra-low-power machine learning
面向超低功耗机器学习的随机超导神经网络的构建
  • 批准号:
    22H00220
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了