Mamalian-like neural networks for dynamic information processing and its learning algorithm

用于动态信息处理的类哺乳动物神经网络及其学习算法

基本信息

  • 批准号:
    04805032
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1992
  • 资助国家:
    日本
  • 起止时间:
    1992 至 1993
  • 项目状态:
    已结题

项目摘要

(1)It is mathematically investigated as to what kind of internal representations are separable by a single output unit of a three layr feednext neural network. A topologically described necessary and sufficient condition is shown for partitions of input spaces to be classified by the output unit. Then an efficient algorithm is proposed for checking if a given partition of the input space is resulted in linear separation at the output unit.(2)(3)These papers improves the sample complexity needed for reliable generalization in the PAC learnability in machine learning. By introducing an ill-posed learning algorithm which gives error worse over the candidates of network realizarions that are attained by minimizing empirical error, we can refine the order of the sample complexity, whereas the previous methods seek the uniform error over the whole configuration space. Essential VC dimension of concept classes, which is smaller than or equal to the number of modifiable system parameters, is introduced for calculating the generalization error instead of the traditional VC dimension analysis. Noisy learning is also treated.(4)In this paper we propose a very simple recurrent neural network(VSRN)architecture which is a three-layr network and contains only self-loop recurrent connections in the hidden layr. The role of the recurrent connection is explained by the network dynamic and its function will be acquired by learning from finite examples like a mamalian action. Through the learning process some characteristic functions observed in the mamalian auditory systems are found automatically acquired by the network. These contain on-neuron, off-neuron and on-off-neuron. This architecture can perform phoneme spotting in real time by utilizing these characteristic functions. Some simulation experiments are done to investigate the recognition performance.
(1)It的数学研究,什么样的内部表示是可分离的一个单一的输出单元的三层前馈神经网络。一个拓扑描述的必要和充分条件示出的分区的输入空间被分类的输出单元。然后提出了一种有效的算法,用于检查输入空间的给定划分是否导致输出单元的线性分离。(2)(3)这些论文提高了机器学习中PAC可学习性的可靠泛化所需的样本复杂度。通过引入一个不适定的学习算法,使错误更糟糕的候选人的网络实现,通过最小化经验误差,我们可以细化的顺序的样本复杂性,而以前的方法寻求在整个配置空间的均匀误差。引入概念类的本质VC维(小于或等于系统可修改参数的个数)代替传统的VC维分析,用于计算泛化误差。噪声学习也被处理。(4)In本文提出了一种非常简单的递归神经网络(VSRN)结构,它是一个三层网络,在隐层中只包含自循环递归连接。递归连接的作用由网络动力学解释,它的功能将通过学习从有限的例子,像一个哺乳动物的行动。通过学习过程,发现了一些在哺乳动物听觉系统中观察到的特征函数。其中包括on-neuron、off-neuron和on-off-neuron。该结构可以通过利用这些特征函数来执行真实的音素定位。通过仿真实验研究了该方法的识别性能。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
柳谷尚寿: "リカレントネットワークを用いた連続音声認識" 電子情報通信学会技術研究報告. SP93-111. 55-62 (1993)
Naoto Yanagiya:“使用循环网络的连续语音识别”IEICE SP93-111 (1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
武田光夫: "Dynamics of Complex Neural Fields with an Analogy to Optical Fields Generated in a Phase-Conjugate Resonator" Proc.SPIE,San Diego. Vol.2039. 314-322 (1991)
Mitsuo Takeda:“复杂神经场的动力学与相位共轭谐振器中生成的光场的模拟”Proc.SPIE,圣地亚哥,第 314-322 卷(1991 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahashi, H and Tomita, E.: ""Estimation of learning Curve in Learning Neural Networks From Noisy Sample."" International Symposium on Nonlinear Theory and its Applications HAWAII. (1993)
Takahashi, H 和 Tomita, E.:“从噪声样本学习神经网络中的学习曲线估计。”夏威夷非线性理论及其应用国际研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高橋治久: "Estimation of learning Curve in Learning Neural Networks From Noisy Sample" International Symposium on Nonlinear Theory and its Applications HAWAII. Vol1,1.2-1. 47-50 (1993)
Haruhisa Takahashi:“从噪声样本中学习神经网络的学习曲线的估计”非线性理论及其应用国际研讨会 HAWAII,第 1 卷,1.2-1(1993 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高橋,治久: "汎化に要するサンプル計算量ーPAC基準による評価ー" 信学技報(NC). NC92-91. 87-94 (1992)
Takahashi, Haruhisa:“泛化所需的样本计算量 - 基于 PAC 标准的评估”IEICE 技术报告 (NC) 87-94 (1992)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Haruhisa其他文献

TAKAHASHI Haruhisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Haruhisa', 18)}}的其他基金

Generative model in a wide class of distribution and its application
广义分布中的生成模型及其应用
  • 批准号:
    24500165
  • 财政年份:
    2012
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning via fusion of discriminative and mean field models and its application to image recognition
通过融合判别模型和平均场模型的机器学习及其在图像识别中的应用
  • 批准号:
    21500213
  • 财政年份:
    2009
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The second order mean field approximation of graphical models and its application to Bayesian inference
图模型的二阶平均场逼近及其在贝叶斯推理中的应用
  • 批准号:
    17500088
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information separation via phasor neural networks and its application
相量神经网络信息分离及其应用
  • 批准号:
    13650402
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real-time speech recognition and model selection via recurrent neural networks
通过循环神经网络进行实时语音识别和模型选择
  • 批准号:
    06650401
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development and Applications of Learning Algorithms for Neural Networks
神经网络学习算法的开发和应用
  • 批准号:
    02650235
  • 财政年份:
    1990
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Neural circuit theory and trained recurrent network modeling of rapid learning
神经回路理论与快速学习的训练循环网络建模
  • 批准号:
    9983227
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
Functional population analysis of the recurrent network in the Drosophila mushroom bodies as the basis of the olfactory memory consolidation.
果蝇蘑菇体内循环网络的功能群体分析作为嗅觉记忆巩固的基础。
  • 批准号:
    18K06328
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural circuit theory and trained recurrent network modeling of rapid learning
神经回路理论与快速学习的训练循环网络建模
  • 批准号:
    10456065
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
Collaborative Research: High Performance Cellular Simultaneous Recurrent Network based Pattern Recognition
合作研究:基于高性能蜂窝同时循环网络的模式识别
  • 批准号:
    1310353
  • 财政年份:
    2013
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: High Performance Cellular Simultaneous Recurrent Network based Pattern Recognition
合作研究:基于高性能蜂窝同时循环网络的模式识别
  • 批准号:
    1309708
  • 财政年份:
    2013
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
SIMULATION OF ACQUIRED DYSLEXIA IN A RECURRENT NETWORK
循环网络中获得性阅读障碍的模拟
  • 批准号:
    2414646
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
SIMULATION OF ACQUIRED DYSLEXIA IN A RECURRENT NETWORK
循环网络中获得性阅读障碍的模拟
  • 批准号:
    2125010
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
SIMULATION OF ACQUIRED DYSLEXIA IN A RECURRENT NETWORK
循环网络中获得性阅读障碍的模拟
  • 批准号:
    2125009
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了