Application of Tunneling Effect in Quantized Probabilistic Model to Intelligent Information Processing

量化概率模型中隧道效应在智能信息处理中的应用

基本信息

  • 批准号:
    13680384
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

We have constructed the hyperparameter estimation algorithms for graphical models which can be treated analytically and have estimated the statistical performances of the algorithms analytically. The research results are published as two papers in Physical Review E, vol.65, no.1 and IEICE Transactions on Information and Systems, vol.ED-65, no.3. We have introduced quantized line fields to compound Gauss-Markov random field model and have succeeded in constructing a useful algorithm for grey-level image restoration. The compound Gauss-Markov random field model is one of familiar graphical models which are powerful for image restoration and dedge etection. The compound Gauss-Markov random field model with quantized line fields can take states expressed as a superposition of edge state and no edge state. The algorithm for image restorations is constructed by using the mean-field approximation. The research results have been published as two papers in IEICE Transactions on Information and Systems, vol.J64-D-II, no.4, 2001 and Journal of Physics A, vol.35, no.37, 2002. We have reformulated a generalized belief propagation for probabilistic inference in artificial intelligence by combining a cluster variation method and a linear response theory, which are ones of familiar techniques in the statistical mechanics and applied the framework to some practical probabilistic inferences in artificial intelligence.The research results have been reported in the SICE Symposium on Systems and Information (RIKEN, Yokohama Genome Science Center, Japan, November 2002) and NIPS*2002 Workshop on Propagation Algorithm on Graphs with Cycles: Theory and Applications (Whistler, Canada, December 2002), and will appear as a paper in IEICE Transactions on Information and Systems, voi.E86-D, no.7 on July 2003.
我们构造了可解析处理的图模型的超参数估计算法,并对算法的统计性能进行了解析估计。研究结果作为两篇论文发表在Physical Review E,vol.65,no.1和IEICE Transactions on Information and Systems,vol.艾德-65,no.3上。本文将量化线场引入复合高斯-马尔可夫随机场模型,并成功地构造了一种实用的灰度图像复原算法。复合高斯-马尔可夫随机场模型是一种常见的图形模型,在图像复原和边缘检测中具有很强的应用。具有量子化线场的复合高斯-马尔可夫随机场模型可以将状态表示为边态和非边态的叠加。利用平均场近似,构造了图像简化算法。研究结果已发表在IEICE Transactions on Information and Systems,vol.J64-D-II,no.4,2001和Journal of Physics A,vol.35,no.37,2002上。结合统计力学中常见的聚类变分方法和线性响应理论,重新构造了人工智能概率推理的广义置信传播框架,并将其应用于人工智能中的一些实际概率推理,研究结果已在SICE Symposium on Systems and Information上发表(RIKEN,横滨基因组科学中心,日本,2002年11月)和NIPS*2002年关于循环图的传播算法研讨会:Theory and Applications(Whistler,Canada,2002年12月),并将于2003年7月在IEICE Transactions on Information and Systems,vol.E86-D,no.7上发表论文。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
田中和之: "確率推論に対する統計力学的アプローチ-クラスター変分法と信念伝搬アルゴリズム-"計測自動制御学会システム・情報部門学術講演会2002講演論文集. 91-96 (2002)
田中和幸:《概率推理的统计力学方法——聚类变分法和置信传播算法》仪器与控制工程师学会系统与信息分部学术会议论文集2002. 91-96 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuyuki Tanaka, Tsuyoshi Horiguchi: "Solvable Markov Random Field Model in Color Image Restoration"Physical Review E. Vol.65・No.4. Article046142-1-Article046142-18 (2002)
Kazuyuki Tanaka、Tsuyoshi Horiguchi:“彩色图像恢复中的可解马尔可夫随机场模型”Physical Review E. Vol.65・No.4。 Article046142-1-Article046142-18 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuyuki Tanaka, Tsuyoshi Horiguchi: "Solvable Markov Random Field Model in Color Image Restoration"Physical Review E. Vol.65, No.4(Article 046142). 1-18 (2002)
Kazuyuki Tanaka、Tsuyoshi Horiguchi:“彩色图像恢复中的可解马尔可夫随机场模型”Physical Review E. Vol.65,No.4(第 046142 条)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun-ichi Inoue and Kazuyuki Tanaka: "Dynamics of the maximum likelihood hyper-parameter estimation in image restoration: Gradient descent versus expectation and maximization algorithm"Physical Review E. 65, No.l, Article No.016125. 1-11 (2002)
Jun-ichi Inoue 和 Kazuyuki Tanaka:“图像恢复中最大似然超参数估计的动力学:梯度下降与期望和最大化算法”Physical Review E. 65,No.l,文章编号 016125。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuyuki Tanaka, Jun-ichi Inoue: "Maximum Likelihood Hyper parameter Estimation for Solvable MarKor Random Field Model in Image Restoration"IEICE Transactions on Information and Systems. E85-D・3. (2002)
Kazuyuki Tanaka、Jun-ichi Inoue:“图像恢复中可解 MarKor 随机场模型的最大似然超参数估计”IEICE Transactions on Information and Systems (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANAKA Kazuyuki其他文献

TANAKA Kazuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANAKA Kazuyuki', 18)}}的其他基金

Investigation of a novel host-microbial interaction focusing on the recognition of bacterial derived molecules by intestinal epithelial integrin.
研究一种新型宿主-微生物相互作用,重点关注肠上皮整合素对细菌衍生分子的识别。
  • 批准号:
    15K19307
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Design Theory of Probabilistic Computational Models for Community Detections based on Non-Additive Volume and Entropy
基于非加性体积和熵的社区检测概率计算模型设计理论
  • 批准号:
    25280089
  • 财政年份:
    2013
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Generation of fundamental design theory of Bayesian ad-hoc network systems based on Markov random fields
基于马尔可夫随机场的贝叶斯自组织网络系统基本设计理论的生成
  • 批准号:
    24650115
  • 财政年份:
    2012
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Computational Aspects of Randomness and Their Structural Analysis via Nonstandard Methods
随机性的计算方面及其通过非标准方法的结构分析
  • 批准号:
    23340020
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards construction of a new computation model based on quantum mechanics
构建基于量子力学的新计算模型
  • 批准号:
    23650001
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Creative extensions of data mining theory by means of quantum-mechanical labeling
通过量子力学标记对数据挖掘理论进行创造性扩展
  • 批准号:
    22300078
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Marriage of non-standard analysis and computability theory toward the light of algorithmic randomness
根据算法随机性将非标准分析与可计算性理论结合起来
  • 批准号:
    19340019
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of sophisticated Bayesian network systems based on large-scale random fields
基于大规模随机场的复杂贝叶斯网络系统设计
  • 批准号:
    18079002
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Fundamental Study for Bayesian Network Systems based on Quantum-Mechanical Fluctuation
基于量子力学涨落的贝叶斯网络系统基础研究
  • 批准号:
    17500134
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of adaptive image processing filter based on Markov random field models
基于马尔可夫随机场模型的自适应图像处理滤波器设计
  • 批准号:
    14084203
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

Integration of a deep probabilistic model and an outlier detection method with an attention mechanism and its application to super-high dimensional time series data
深度概率模型与带有注意力机制的异常值检测方法的集成及其在超高维时间序列数据中的应用
  • 批准号:
    23H03357
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of X-ray phase imaging method using diffusion probabilistic model
利用扩散概率模型改进X射线相位成像方法
  • 批准号:
    23K11700
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Probabilistic Model to Predict Metacarpophalangeal Fractures in Horses
预测马掌指骨骨折的概率模型
  • 批准号:
    576070-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
A test of a novel non-probabilistic model of 3D cue integration
3D 线索整合的新型非概率模型的测试
  • 批准号:
    2120610
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Soft Robotics Control Engineering by Combining Probabilistic Model-Based Control and Sensor Feedback
结合基于概率模型的控制和传感器反馈的软机器人控制工程
  • 批准号:
    20H00610
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Benchmarks for Probabilistic Model Checking
概率模型检查的基准
  • 批准号:
    542243-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Benchmarks for Probabilistic Model Checking
概率模型检查的基准
  • 批准号:
    539700-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    University Undergraduate Student Research Awards
CRII: III: A Scalable Probabilistic Model Selection Method for Deep Learning in Gene-Protein Network Inference and Integration
CRII:III:基因-蛋白质网络推理和集成中深度学习的可扩展概率模型选择方法
  • 批准号:
    1850492
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Speech Representation Using Emotion-Speaker Controllable Probabilistic Model Based on Extended Boltzmann Distribution
基于扩展玻尔兹曼分布的情绪说话者可控概率模型的语音表示
  • 批准号:
    18K18069
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic model-based time-series forecasting neural networks and related applications to biosignal forecasting
基于概率模型的时间序列预测神经网络及其在生物信号预测中的相关应用
  • 批准号:
    17K12752
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了