Formation of Singulatiries in Solutions of Nonlinear Schrodinger Equations and Related Fields

非线性薛定谔方程解中奇异点的形成及相关领域

基本信息

项目摘要

Nawa and Ishige (collaboration with Ishiwata and Sakajo) organizes a seminar (http://www.gifu-u.ac.jp/~tisiwata/seminar/ma_seminar.html) ; we had many opportunities to have discussions and interactions with researchers from several fields of mathematical sciences through the seminar.For blowup solutions of the pseudo-conformally invariant nonlinear Schrodinger equation (pc-NLS), Nawa obtain some relation between their asymptotic behavior and blowup rates. This result enable him to launch into a full-dress investigation of blowup rate via the Nelson process behind the solution. He also obtain some analogous results on the derivative nonlinear Schrodinger equation. It turns out that the method developed for pc-NLS is useful for investigating a coupled system of NLS which is modeled on the BCS reduced Hamiltonian in a classical context ; we can see pair-creation in solutions of this classical field equation.Ishige succeeded to characterize the blowup set for semilinear heat equations with … More Neuman boundary conditions. He also investigated the hot spot movement of solutions of the linear heat equation on the exterior domain of a ball under the Dirichlet or Neuman boundary conditions. In the course of the study, he obtain useful results to make further investigation into the asymptotic behavior of solutions for more general reaction diffusion equations.Among other his results on several fields of mathematical sciences, Suzuki made an interesting study on self-dual gauge field equations via blowup analysis, and on blowup problem for simplified system of chemotaxis ; continuation of the solution after blowup, blowup in infinite time, etc.Ogawa developed a theory on the topological verification for numerical analysis via Conley index to obtain rigorous results for formation of localized patterns in solutions to the quintic Swift-Hohenberg equation. He also investigated the oscillatory behavior in an Electrochemical reaction diffusion system ; he conducted a bifurcation analysis with an aid of numerical analysis. Less
纳瓦和Ishige(与Ishiwata和Sakajo合作)组织了一个研讨会(http://www.gifu-u.ac.jp/Aktisiwata/Aktisar/ma_Aktisar.html),我们有很多机会通过研讨会与来自数学科学各个领域的研究人员进行讨论和互动。对于伪共形不变非线性薛定谔方程(pc-NLS)的爆破解,纳瓦得到了它们的渐近行为与爆破速率之间的一些关系。这个结果使他能够通过解背后的纳尔逊过程对爆破率进行全面的研究。对导数非线性薛定谔方程也得到了类似的结果。结果表明,对于以BCS约化哈密顿量为模型的耦合NLS系统,我们可以用pc-NLS方法来研究;在这个经典场方程的解中,我们可以看到对的产生。Ishige成功地刻画了半线性热方程的爆破集, ...更多信息 Neuman边界条件他还研究了热点运动的解决方案的线性热方程的外部域的一个球的狄利克雷或纽曼边界条件。在研究过程中,他得到了一些有用的结果,对更一般的反应扩散方程解的渐近性态作了进一步的研究,其中Suzuki对自对偶规范场方程的爆破分析和简化趋化系统的爆破问题作了有趣的研究;解在爆破后的延续、无限时间内的爆破等。Ogawa发展了一种关于通过Conley指数进行数值分析的拓扑验证的理论,以获得在五次Swift-Hohenberg方程的解中形成局部模式的严格结果。他还研究了振荡行为的电化学反应扩散系统,他进行了分叉分析的援助,数值分析。少

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-topological condensates in self-dual Chern-Simons gauge theory
自对偶陈-西蒙斯规范理论中的非拓扑凝聚
Formation of singularities in solutions of the nonlinear Schrodinger equations and sample path properties of the corresponding Nelson diffusions
非线性薛定谔方程解中奇点的形成以及相应纳尔逊扩散的样本路径特性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ogawa;T.Yokota;T.Kobayashi;Hayato NAWA
  • 通讯作者:
    Hayato NAWA
On blowup problem for nonlinear diffusion equations (HISENKEI KAKUSAN-HOUTEISIKI NO BAKUHATSUKAI NI TSUITE, in Japanese))
关于非线性扩散方程的爆炸问题(HISENKEI KAKUSAN-HOUTEISIKI NO BAKUHATSUKAI NI TSUITE,日语)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuhiro Ishige;et al.
  • 通讯作者:
    et al.
Blow-up analysis for Liouville type equation in self-dual gauge field theories
自对偶规范场论中Liouville型方程的爆炸分析
Rigorous Numerics for Global Dynamics: A Study of the Swift-Honenberg Equation
全球动力学的严格数值:Swift-Honenberg 方程的研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAWA Hayato其他文献

NAWA Hayato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAWA Hayato', 18)}}的其他基金

An investigation of the continuation problem for the nonlinear Schroedinger equations beyond the singularity
奇点外非线性薛定谔方程连续问题的研究
  • 批准号:
    23654052
  • 财政年份:
    2011
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Stochastic Processes and Statistical Phenomena behind Partial Differential Equaitons
偏微分方程背后的随机过程和统计现象
  • 批准号:
    23340030
  • 财政年份:
    2011
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
  • 批准号:
    23K03161
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on nonlinear heat equations based on the matched asymptotic expansions
基于匹配渐近展开式的非线性热方程分析
  • 批准号:
    18K13437
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mean Curvature Flow and Nonlinear Heat Equations
平均曲率流和非线性热方程
  • 批准号:
    1707270
  • 财政年份:
    2017
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Research on characterization of the fundamental function sigma in the theory of Abelian functions via heat equations and general addition formulae
通过热方程和一般加法公式表征阿贝尔函数理论中的基本函数 sigma
  • 批准号:
    16K05082
  • 财政年份:
    2016
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blowup problems for nonlinear heat equations
非线性热方程的爆炸问题
  • 批准号:
    26800065
  • 财政年份:
    2014
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Heat equations: geometric methods and applications
热方程:几何方法和应用
  • 批准号:
    DP120102462
  • 财政年份:
    2012
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Projects
Aymptotic expansions of fundamental solutions to heat equations and their apllications
热方程基本解的渐近展开及其应用
  • 批准号:
    24540189
  • 财政年份:
    2012
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the long term behaviour of stochastic heat equations
关于随机热方程的长期行为
  • 批准号:
    EP/J017418/1
  • 财政年份:
    2012
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Research Grant
Geometric harmonic analysis for diffusive heat equations
扩散热方程的几何调和分析
  • 批准号:
    261100-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric harmonic analysis for diffusive heat equations
扩散热方程的几何调和分析
  • 批准号:
    261100-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了