On ring-theoretical properties of blow-up rings over singular points in positive characteristic
正特性奇点上爆炸环的环理论性质
基本信息
- 批准号:14540020
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It continued for the previous research, and we have studied Hilbert-Kunz multiplicity as an invariant of singular points in positive characteristic. On the other hand, for last two years, we have studied mainly the F-rationality of Rees algebras as one of ring-theoretical properties of blow-up algebras.The most important result in our research is to give a criterion for the F-rationality of Rees algebras with respect to m-primary ideals in Cohen-Macaulay local rings. The notion of F-rationality was defined by Fedder and Watanabe as an analogue (in positive characteristic) of that of rational singularity in characteristic zero. But there are certainly different aspects between them. For instance, Boutot's theorem, which asserts that any direct summand of a rational singularity is also a rational singularity, is one of important theorems, because this theorem ensures the Cohen-Macaulay property of invariant subrings of linearly reductive groups. However, as for F-rationality, the similar result does not hold in general. Actually, as an application of our result, we can provide many counterexamples for such this.Another contribution of our research is to find a generalization of tight closure, and to generalize the notion of test ideal in the theory of tight closures. In fact, we showed that the generalized test ideal is an analogue (in positive characteristic) of a multiplier ideal in collaboration with Hara Nobuo at Tohoku University. Furthermore, we showed that the F-rationality of Rees algebra of an ideal in a rational double point in dimension two gives a sufficient condition for the multiplier ideal of the ideal and the generalized test ideal with respect to the ideal coincides.We gave a presentation of our results as above at Symposium on Commutative ring theory.
在前人研究的基础上,我们研究了Hilbert-Kunz重数作为奇点正特征不变量的性质。另一方面,近两年来,我们主要研究了作为Blow-up代数环论性质之一的Rees代数的F-合理性,其中最重要的结果是给出了Cohen-Macaulay局部环中Rees代数关于m-准素理想的F-合理性的一个判别准则。Fedder和Watanabe定义了F-合理性的概念,作为特征零中的合理奇点的类似物(在正特征中)。但它们之间肯定有不同的方面。例如,Boutot定理,它断言一个有理奇点的任何直和项也是一个有理奇点,是一个重要的定理,因为这个定理确保了线性约化群的不变子环的Cohen-Macaulay性质。然而,对于F-合理性,类似的结果一般不成立。实际上,作为我们结果的应用,我们可以提供许多反例。我们研究的另一个贡献是找到了紧闭包的一个推广,推广了紧闭包理论中的测试理想的概念。事实上,我们证明了广义测试理想是一个类似物(在积极的特征)的乘数理想在东北大学原伸夫合作。此外,我们还证明了二维有理二重点上理想的Rees代数的F-有理性给出了理想的乘子理想与广义测试理想关于理想重合的充分条件,并在交换环理论研讨会上作了介绍.
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Hashimoto: ""Geometric quotients are algebraic schemes" based on Fogarty's idea"J.Math.Kyoto Univ.. (in press).
M.Hashimoto:“基于福格蒂思想的“几何商是代数方案””J.Math.Kyoto Univ..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.-i.Watanabe, K.Yoshida: "Minimal relative Hilbert-Kunz multiplicity"Illinois J. Math.. (in press).
K.-i.Watanabe、K.Yoshida:“最小相对 Hilbert-Kunz 多重性”Illinois J. Math..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Hara, K.-i.Watanabe, K.Yoshida: "F-rationality of Rees algebras"J.Algebra. 247. 153-190 (2002)
N.Hara、K.-i.Watanabe、K.Yoshida:“Rees 代数的 F 理性”J.代数。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Eto, K.Yoshida: "Notes on Hilbert-Kunz multiplicity of Rees algebras"Comm.Alg.. 31. 5943-5976 (2003)
K.Eto, K.Yoshida:“里斯代数的 Hilbert-Kunz 重数的注释”Comm.Alg.. 31. 5943-5976 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Hashimoto: ""Geometric quotients are algebraic schemes"based on Fogarty's idea"J.Math.Kyoto Univ.. (in press).
M.Hashimoto:“基于福格蒂思想的“几何商是代数方案””J.Math.Kyoto Univ..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHIDA Ken-ichi其他文献
YOSHIDA Ken-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHIDA Ken-ichi', 18)}}的其他基金
Research on rational singularities and almost Gorenstein blow-up algebras
有理奇点和几乎Gorenstein爆炸代数的研究
- 批准号:
16K05110 - 财政年份:2016
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on sudden cardiovascular death in animal model of sleep apnea syndrome
睡眠呼吸暂停综合征动物模型心血管猝死的研究
- 批准号:
23249038 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Metabolism of inositol stereoisomers in a thermophile,Geobacillus kaustophilusHTA426
嗜热土芽孢杆菌 HTA426 中肌醇立体异构体的代谢
- 批准号:
22310130 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research of ring-invariants associated to powers of ideals
与理想幂相关的环不变量的研究
- 批准号:
22540047 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the molecular mechanism underlying sudden cardiac deaths due to toxic substanses, ischemia and emotional stress
有毒物质、缺血、情绪应激导致心源性猝死的分子机制研究
- 批准号:
20390193 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research of multiplier ideals and tight closures from viewpoint of commutative algebra and computational algebra
从交换代数和计算代数的角度研究乘子理想和紧闭集
- 批准号:
19340005 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on the contribution of oxidative stress to the pathogenesis of cardiovascular diseases associated with life-styles
氧化应激在生活方式相关心血管疾病发病机制中的作用研究
- 批准号:
18390204 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study into the Dynamism and Fluctuational Factors of Foreign Exchange Rates
外汇汇率动态及波动因素研究
- 批准号:
15530225 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on cell injury due to Carbon Monoxide and Nitric Oxide under ischemia or shock
缺血或休克时一氧化碳和一氧化氮所致细胞损伤的研究
- 批准号:
14370152 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification of new fatty acids associated with pathogenesis of ischemia and various types of intoxication and its application to a new diagnostic method
与缺血和各种中毒发病机制相关的新脂肪酸的鉴定及其在新诊断方法中的应用
- 批准号:
12470107 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
F-rational Ringの研究
F有理环研究
- 批准号:
06640079 - 财政年份:1994
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)