Fundamental groups of algebraic varieties
代数簇的基本群
基本信息
- 批准号:14540053
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We generalized the classical Zariski-van Kampen theorem on the fundamental group of an open algebraic variety. As an application, we obtained a hyperplane-section theorem of Zariski type for Grassmannian varieties, and revealed a subtle relation between fundamental groups and Chow forms. As another application, we calculated the fundamental group of the complement to the discriminant variety of a sufficiently ample line bundle on a compact Riemann surface.Hoping to verify the generalized Hodge conjecture for certain varieties, we investigated the cylinder homomorphism associated with a family of algebraic cycles, and gave a sufficient condition for the image of the cylinder homomorphism contains the module of vanishing cycles. Using Grobner bases, we proved the generalized Hodge conjecture for certain Fano complete intersections.We made the complete list of maximal configurations of rational double points on supersingular K3 surfaces by means of lattice theory and heavy use of computers. The complete list of extremal (quasi-) elliptic fibrations on supersingular K3 surfaces was also obtained. As a corollary, it was shown that every supersingular K3 surface in characteristic 2 is birational to a purely inseparable double cover of a projective plane, which has 21 ordinary nodes. We described the configuration of the 21 nodes in terms of certain binary codes of length 21. By the same method, we also showed that every supersingular K3 surface in odd characteristic is also birational to a double cover of a projective plane.
本文推广了经典的关于开代数簇的基本群的Zapriki-van坎彭定理。作为应用,我们得到了Grassmannian簇的Zapriki型超平面截口定理,并揭示了基本群与Chow型之间的微妙关系。作为另一个应用,我们计算了紧致Riemann曲面上充分充量线丛的判别簇的补的基本群,为了验证某些簇的广义Hodge猜想,我们研究了与代数圈族相关的柱同态,给出了柱同态的象包含消失圈模的一个充分条件.利用Grobner基证明了某些Fano完全交的广义Hodge猜想,并利用格理论和大量的计算机,给出了超奇异K3曲面上有理二重点的极大构型的完整列表.并得到了超奇异K3曲面上极值(拟)椭圆纤维化的完整列表。作为推论,证明了特征为2的超奇异K3曲面对于射影平面的一个纯不可分的二重覆盖是双有理的,该二重覆盖有21个普通结点。我们用长度为21的某些二进制码来描述21个节点的配置。用同样的方法,我们还证明了每一个奇特征的超奇异K3曲面对于射影平面的双复盖也是双有理的。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vanishing cycles, the generalized Hodge conjecture and Grobner bases.
消失循环、广义霍奇猜想和格罗布纳基础。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hara;Tomio;Yuji Kobayashi;Ichiro Shimada
- 通讯作者:Ichiro Shimada
Supersingular K3 surfaces in characteristic 2 as double covers of projective plane
特征2中的超奇异K3曲面作为射影平面的双覆盖
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tanaka;Ryuichi;Y.Kobayashi;Ichiro Shimada;Yoshiaki Shoji;Y.Kobayashi;Tamio Hara;Ichiro Shimada;Ichiro Shimada
- 通讯作者:Ichiro Shimada
On the Zariski-van Kampen theorem.
关于 Zariski-van Kampen 定理。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:M.Ktsura;Y.Kobayashi;F.Otto;Ichiro Shimada
- 通讯作者:Ichiro Shimada
Ichiro Shimada: "Fundamental groups of algebraic fiber spaces"in Comment.Math.Helv. (発売予定).
Ichiro Shimada:Comment.Math.Helv 中的“代数纤维空间的基本群”(待发布)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Vanishing cycles, the generalized Hodge conjecture and Grobner bases
消失循环、广义霍奇猜想和格罗布纳基底
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yasutomi;Shin-ichi;Tamio Hara;Ichiro Shimada
- 通讯作者:Ichiro Shimada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMADA Ichiro其他文献
SHIMADA Ichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMADA Ichiro', 18)}}的其他基金
Higher dimensional braid monodromy
高维辫状单峰
- 批准号:
23654012 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
K3 surfaces and related algebraic varieties
K3 曲面和相关代数簇
- 批准号:
20340002 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Explicit Study of Algebraic Varieties
代数簇的显式研究
- 批准号:
18540001 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2306726 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
- 批准号:
23K03106 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
- 批准号:
23K19016 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Research Grant














{{item.name}}会员




