Geometric study of infinite discrete groups

无限离散群的几何研究

基本信息

  • 批准号:
    14540055
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study several problems on infinite discrete groups from the view point of geometry."Geometric group theory" has its root in the pionear work by Gromov, and has been developed mainly in USA and Europe in the last 15 years or so.It is a dynamic field where one can apply classical combinatorial group theory, hyperbolic geometry, low dimensional topology, and the theory of mapping class groups. Unfortunately, there has not been much activities of this field in Japan yet.During the three years, we not only conducted our research, but also tried to put a foundation of the research activities of this field in Japan.One of our research themes has been on isometric actions of group on CAT(0) spaces. The notion of "CAT(0) spaces" was introduced by Gromov to geodesic metric spaces as a generalization of complete, simply-connected Riemannian manifolds, called "Hadamard manifolds".Given a discrete group G, it is important and useful to find a metric space X on which G acts on by isometries, properly. One classical example is the action of a lattice subgroup in a Lie group on its symmetric space.It would be interesting to find such X of minimal dimensions. In this direction, there has been a work by Brady-Crisp. We developed their work and found an answer to their question, found new examples, and formulated further questions in the paper "Parabolic isometries of CAT(0) spaces and CAT(0) dimensions", Fujiwara, Koji ; Shioya, Takashi ; Yamagata, Saeko. Algebr.Geom.Topol.4(2004), 861-892
本项目的目标是从几何的角度研究无限离散群的几个问题。“几何群论”起源于Gromov的开创性工作,近15年来主要在美国和欧洲发展起来,是一个动态的领域,人们可以应用经典的组合群论、双曲几何、低维拓扑和映射类群理论。遗憾的是,这一领域在日本还没有太多的活动。在这三年中,我们不仅进行了我们的研究,而且试图为日本这一领域的研究活动奠定基础。我们的研究主题之一是CAT(0)空间上的群体等距行动。“CAT(0)空间”的概念是由Gromov引入到测地度量空间中的,它是完备的单连通黎曼流形的推广,称为“Hadamard流形”。给定一个离散群G,找到一个度量空间X,使G在X上等距地作用是非常重要和有用的。一个经典的例子是李群中的格子群在其对称空间上的作用,找到这样的最小维数的X是很有趣的。在这个方向上,有一个工作的Brady-Crisp。我们发展了他们的工作,找到了他们的问题的答案,发现了新的例子,并制定了进一步的问题,在文件“抛物线等距的CAT(0)空间和CAT(0)维”,藤原,浩二;盐屋,隆;山形,佐惠子。Algebr.Geom.Topol.4(2004),861-892

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Bestrina, K.Fujiwara: "Bounded cohomology of subgroups of mapping class groups"Geom. and Topology. 6. 69-89 (2002)
M.Bestrina、K.Fujiwara:“映射类群的子群的有界上同调”Geom。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Bounded cohomology of subgroups of mapping class groups.
映射类群子群的有界上同调。
K.Fujiwara: "On the outer antomorphism group of a hyperbolic group"Israel J of Math.. 131. 277-284 (2002)
K.Fujiwara:“论双曲群的外同构群”Israel J of Math.. 131. 277-284 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The Geometry of Total Curvature on Complete Open Surfaces
  • DOI:
    10.1017/cbo9780511543159
  • 发表时间:
    2003-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Shiohama;T. Shioya;Minoru Tanaka
  • 通讯作者:
    K. Shiohama;T. Shioya;Minoru Tanaka
Parabolic isometries of CAT(0) spaces and CAT(0) dimensions.
CAT(0) 空间和 CAT(0) 维数的抛物线等距。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Fujiwara;T. Shioya and S. Yamagata.
  • 通讯作者:
    T. Shioya and S. Yamagata.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIWARA Koji其他文献

FUJIWARA Koji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJIWARA Koji', 18)}}的其他基金

Automorphisms of groups and limit elements
群和极限元素的自同构
  • 批准号:
    23654019
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
RESEARCH FOR INTERNATIONAL STANDARD ON MEASUREMENT METHOD OF MAGNETIC PROPERTIES BY MEANS OF A SINGLE SHEET TESTER EQUIPPED WITH H-COIL
H型线圈单片测试仪磁性能测量方法国际标准研究
  • 批准号:
    20360131
  • 财政年份:
    2008
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Geometric group theory
几何群论研究
  • 批准号:
    19340013
  • 财政年份:
    2007
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric group theory and hyperbolic geometry
几何群论和双曲几何
  • 批准号:
    17540057
  • 财政年份:
    2005
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vector Magnetic Properties Oriented to Magnetic Field Analysis
面向磁场分析的矢量磁特性
  • 批准号:
    13555081
  • 财政年份:
    2001
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Identification of the Poisson Boundary on CAT(0) Spaces
CAT(0) 空间上泊松边界的识别
  • 批准号:
    576006-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Research on Borel conjecture and Novikov conjecture in CAT (0) spaces
CAT(0)空间中的Borel猜想和Novikov猜想研究
  • 批准号:
    15K04885
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Artin groups and CAT(0) spaces
Artin 群和 CAT(0) 空间
  • 批准号:
    1106726
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Groups acting on Asymptotically CAT(0) spaces
作用于渐进 CAT(0) 空间的群
  • 批准号:
    EP/I020276/1
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了