Theory and appliation of microscopic approaches to macroscopic fluid-dynamic equations
宏观流体动力学方程微观方法的理论与应用
基本信息
- 批准号:14550150
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, the theory of kinetic scheme for the gas-dynamic equations (compressible Euler equations, compressible Navier-Stokes equations) is established and some numerical methods are developed. The kinetic scheme, which was originally developed as a mimic of the DSMC method for the Boltzmann equation, is revealed to be an extension of the classical Lax-Wendroff scheme and the significance of the kinetic approach is shown to be in the management of the discontinuous reconstruction of the macroscopic state. The newly developed kinetic schemes, which are based on this new finding, work as shock-capturing schemes and yield fine boundary-layer profiles with reasonable resolution. These schemes can easily be applied to various molecular models; the extensions to the NS equations for hard-sphere molecules and the Euler equation for diatomic gases are made. With the oversea research collaborator, the head investigator developed kinetic schemes for the Burnett and super-Burnett equations, which deal with higher order rarefaction effects. Furthermore, a hybrid method, which solves fluid-dynamic equations in (nearly) equilibrium regions and kinetic equation in non-equilibrium regions is developed. In the course of these studies, the time step truncation error of the DSMC was studied. The outcome of this study is reflected in the construction of new schemes. Under the supervision of the head investigator, some graduate students (master) worked in this research project and had the opportunity as speakers in an international conference, which is an outcome of the present project from the educational point of view.
本研究建立了气体动力学方程(可压缩Euler方程、可压缩Navier-Stokes方程)的动力学格式理论,发展了相应的数值计算方法。动力学计划,这是最初开发的模拟DSMC方法的玻尔兹曼方程,被发现是一个经典的Lax-Wendroff计划的扩展和动力学方法的意义被证明是在管理的宏观状态的不连续重建。新开发的动力学方案,这是基于这一新的发现,工作作为激波捕获计划,并产生良好的边界层轮廓与合理的分辨率。这些方案可以很容易地应用于各种分子模型,扩展到NS方程的硬球分子和欧拉方程的双原子气体。与海外研究合作者一起,首席研究员开发了Burnett和super-Burnett方程的动力学格式,该格式处理高阶稀疏效应。在此基础上,提出了一种在(近)平衡区求解流体动力学方程,在非平衡区求解动力学方程的混合方法。在这些研究的过程中,时间步长截断误差的DSMC进行了研究。这项研究的结果反映在新计划的建设中。在首席研究员的监督下,一些研究生(硕士)参与了本研究项目,并有机会在一次国际会议上发言,从教育的角度来看,这是本项目的一个成果。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ohsawa: "Deterministic Hybrid Computation of Rarefied Gas Flows"Rarefied Gas Dynamics: AIP Conference proceedings. 663. 931-938 (2003)
T.Ohsawa:“稀薄气体流动的确定性混合计算”稀薄气体动力学:AIP 会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Hokazono: "On the Time Step Error of the DSMC"Rarefied Gas Dynamics : AIP Conference proceedings. 663. 390-397 (2003)
T.Hokazono:“论 DSMC 的时间步长误差”Rarefied Gas Dynamics:AIP 会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ohwada: "Deterministic Hybrid Computation of Rarefied Gas Flows"Rarefied Gas Dynamics : AIP Conference proceedings 663. 931-938 (2003)
T.Ohwada:“稀薄气体流动的确定性混合计算”稀薄气体动力学:AIP 会议记录 663. 931-938 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ohsawa: "Deterministic Hybrid Computation of Rarefied Gas Flows"Rarefied Gas Dynamics : AIP Conference proceedings. 663. 931-938 (2003)
T.Ohsawa:“稀薄气体流动的确定性混合计算”稀薄气体动力学:AIP 会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ohwada: "The kinetic scheme for the full-Burnett equations"Journal of Computational Physics. (掲載予定).
T. Ohwada:“完整伯内特方程的动力学方案”计算物理学杂志(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHWADA Taku其他文献
OHWADA Taku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHWADA Taku', 18)}}的其他基金
Theory and application of asymptotic numerical method for the incompressible viscous flows
不可压缩粘性流渐近数值方法理论与应用
- 批准号:
21560173 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New approach in computational fluid dynamics on the basis of kinetic theory
基于动力学理论的计算流体动力学新方法
- 批准号:
17560147 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Large steady solutions to the free-boundary Navier-Stokes equations
自由边界纳维-斯托克斯方程的大稳态解
- 批准号:
2886064 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Studentship
Studies on the Navier-Stokes equations by numerical methods
纳维-斯托克斯方程的数值方法研究
- 批准号:
22K03438 - 财政年份:2022
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
End-point maximal regularity and its application to the Navier-Stokes equations
端点最大正则性及其在纳维-斯托克斯方程中的应用
- 批准号:
21H00992 - 财政年份:2021
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Removability of time-dependent singularities in the Navier-Stokes equations
纳维-斯托克斯方程中与时间相关的奇点的可去除性
- 批准号:
21J14366 - 财政年份:2021
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applied mathematics master's degree - numerical methods for the incompressible Navier-Stokes equations
应用数学硕士学位 - 不可压缩纳维-斯托克斯方程的数值方法
- 批准号:
553966-2020 - 财政年份:2020
- 资助金额:
$ 1.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
Intermittent Solutions of the Navier-Stokes Equations: From Onsager's Conjecture to Turbulence
纳维-斯托克斯方程的间歇解:从昂萨格猜想到湍流
- 批准号:
1909849 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Mathematical analysis for Navier-Stokes equations with approximate parameter
具有近似参数的纳维-斯托克斯方程的数学分析
- 批准号:
19K03577 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real analytic research on the Navier-Stokes equations on exterior domains with external force
具有外力的外域纳维-斯托克斯方程的实解析研究
- 批准号:
17K05339 - 财政年份:2017
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




