代数曲線に関するアルゴリズムとアーベル多様体及びそのモデュライ空間の数論的研究

代数曲线算法和阿贝尔簇及其模空间的算术研究

基本信息

  • 批准号:
    14740029
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

研究テーマは「アーベル多様体の保形性」である。これは「有理数体Q上定義される楕円曲線はすべて保形性を持つ」という谷山氏村予想と呼ばれる問題に端を発するものである。現在では十分な解決をみたこの予想は、有名なFermat予想と直結して注目を集めた問題であり、1次元アーベル多様体である楕円曲線と1変数保形形式とを結びつける深遠な意味を持つ問題でもある。現在では、この予想の対象がQ上の楕円曲線にとどまること無く、アーベル多様体のより大きな族に拡張されている。このテーマの下で、とりわけ、(1)(1,d)型のアーベル曲面のモデュライ空間におけるある性質を満たす有理点の決定(2)種数2の代数曲線に関するアルゴリズムの開発とその実装(3)アーベル曲面と2次元ジーゲル保形形式との対応という問題に焦点を当てて研究を行っている。(1)の問題については、2次体上の有理点を与えるアーベル曲面や有理数体上定義されるがその自己準同型環が4次CM体の極大整環ではない整環となるようなアーベル曲面の具体例を数多く構成した。また、(2),(3)の問題に関しても、多変数の保系形式のフーリエ係数を計算することにより、いくつかの具体例について取り組んだ。以上の研究成果のまとめとして、3月にカナダのトロント大学で開かれたGANITAセミナーにおいて講演を行った。さらに、これらの結果について論文として纏め発表する予定である。さらに、8月に広島県福山市で開催した第12回整数論サマースクールでは、90人近い参加者を集め世話人として会を取りまとめた。
Research on "Conformity of Multi-body" The definition of rational number Q is not consistent with the shape of the curve. Now, we can solve the problem of problem, and we can solve the problem of problem. Now, we want to target the curve on Q. We want to target the curve on Q. (1) Determination of rational points in relation to properties of curved surfaces of type (1,d);(2) Development of algebraic curves of number 2;(3) Focus on problems of curved surfaces of type (1, d) and conformal forms of type 2. (1)The problem is that rational points on a quadratic body are defined on a rational number body, and a quasi-isotypic ring of a quadratic CM body is defined on a rational number body. The problems of (2) and (3) are related to the calculation of the coefficient of the multi-variable number of the preservation form. The above research results were presented in March at the University of Michigan. The results of the study are as follows: The 12th round of integer theory was held in Fukuyama City in August, and 90 participants gathered in the meeting.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UMEGAKI Atsuki: "Determination of all Q-rational CM-points in the moduli spaces of polarized abelian surfaces"Analytic Number Theory, C.Jia and K.Matsumoto (eds.), Developments in Mathematics. 6. 349-357 (2003)
UMEGAKI Atsuki:“极化阿贝尔曲面模空间中所有 Q 有理 CM 点的确定”分析数论,C.Jia 和 K.Matsumoto(编辑),数学发展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
梅垣 敦紀: "代数的整数論(足立恒雄監修)(平野 皓正編)(原著:J.ノイキルヒ著 Algebraishe Zahlentheorie)"シュプリンガー・フェアラーク東京株式会社. 585 (2003)
Atsunori Umegaki:“代数数论(足立恒夫编辑)(平野照正编辑)(原作者:J. Neukirch 着的 Algebraishe Zahlentheorie)” Springer-Verlag Tokyo Co., Ltd. 585 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Determination of all Q-rational CM-points in the moduli spaces of polarized abelian surfaces
极化阿贝尔曲面模空间中所有 Q 有理 CM 点的确定
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

梅垣 敦紀其他文献

Abel-Jacobiの定理
阿贝尔-雅可比定理
An open book type structure for Engel structures
恩格尔结构的开卷式结构
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    尾崎 学;梅垣 敦紀;梅垣 敦紀;Jiro ADACHI;Jiro ADACHI and Go-o ISHIKAWA;Jiro ADACHI;Jiro ADACHI;足立 二郎;足立 二郎
  • 通讯作者:
    足立 二郎
Classification of horizontal loops in the standard Engel space
标准恩格尔空间中水平环的分类
Integral curves for contact and Engel structures
接触结构和恩格尔结构的积分曲线
Towards Engel topology
走向恩格尔拓扑
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    尾崎 学;梅垣 敦紀;梅垣 敦紀;Jiro ADACHI;Jiro ADACHI and Go-o ISHIKAWA;Jiro ADACHI;Jiro ADACHI;足立 二郎
  • 通讯作者:
    足立 二郎

梅垣 敦紀的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('梅垣 敦紀', 18)}}的其他基金

アーベル多様体及びその保型性と関連するアルゴリズムの数論的研究
阿贝尔簇及其自同构的算术研究以及相关算法
  • 批准号:
    17740024
  • 财政年份:
    2005
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
代数体上の楕円曲線とその保型性
代数域上的椭圆曲线及其模性
  • 批准号:
    98J06600
  • 财政年份:
    1998
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Cooperative Agreement
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Fellowship Award
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
  • 批准号:
    DP240102230
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Discovery Projects
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Discovery Projects
Co-evolution of supermassive black holes and galaxies with the James Webb Space Telescope
超大质量黑洞和星系与詹姆斯·韦伯太空望远镜的共同演化
  • 批准号:
    23K22533
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/2
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了