Computational principal on how parts and wholes cooperate and conflict
关于部分和整体如何合作和冲突的计算原理
基本信息
- 批准号:15300001
- 负责人:
- 金额:$ 10.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational principals on how parts and wholes cooperate and conflict are investigated from the view point of computation theory. Among the results obtained in this project there are followings which we consider important :1. Using G-entropy, introduced in our paper, we develop an efficient boosting algorithm which is designed by using the top-down decision tree learning algorithm with its splitting criterion based on the G-entropy.2. The problem of dynamically apportioning resources among a set of options in a worst-case online framework is investigated by introducing information on how high the risk of each option is. We apply the Aggregating Algorithm to this problem and give a tight performance bound.3. We propose three methods of random projection which randomly maps data represented as vectors to a low dimensional space so that the margin is approximately preserved. Our algorithm turns out to be more efficient than the well known random projection method based on the Johnson-Lindenstrauss Lemma.4. We derive a superpolynomial lower bound on the size of Boolean circuits that compute the clique function with *(loglog n) negation gates.5. We show that a single variable function f(x)=x_j has the minimum correlation with the majority function among all fair functions, where the correlation between Boolean functions f and g is defined to be 1-2Pr[f(x)≠g(x)], and a Boolean function f is defined to be fair if Pr[f(x)=1]=1/2.
从计算理论的角度研究了部分与整体如何合作与冲突的计算原理。在本项目所取得的成果中,我们认为以下是重要的:1。本文的主要工作如下:1.利用G-熵,设计了一种高效的Boosting算法,该算法采用自顶向下的决策树学习算法,其分裂准则基于G-熵。通过引入每个选项的风险有多高的信息,在最坏情况下的在线框架中的一组选项之间的动态分配资源的问题进行了研究。我们将聚集算法应用于该问题,并给出了一个严格的性能界.我们提出了三种随机投影的方法,随机映射数据表示为向量到一个低维空间,使利润率近似保留。我们的算法比基于Johnson-Lindenstrauss引理的随机投影算法更有效.我们推导出一个超多项式下界的大小的布尔电路,计算团函数与 *(loglog n)否定门。证明了在所有公平函数中,单变量函数f(x)= xj与多数函数的相关性最小,其中布尔函数f与g的相关性定义为1- 2 Pr [f(x)<$g(x)],若Pr[f(x)=1]=1 - 2,则布尔函数f定义为公平函数.
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theory of Computation, Automata and Languages
计算、自动机和语言理论
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tatsuya Watanabe;Eiji Takimoto;Kazuyuki Amano;Akira Maruoka;Akira Maruoka
- 通讯作者:Akira Maruoka
Path Kernels and Multiplicative Updates
- DOI:10.1007/3-540-45435-7_6
- 发表时间:2002-07
- 期刊:
- 影响因子:0
- 作者:Eiji Takimoto;Manfred K. Warmuth
- 通讯作者:Eiji Takimoto;Manfred K. Warmuth
A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with At Most (1/6) log log n Negation Gates
最多 (1/6) log log n 负门计算团函数电路的超多项式下界
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kazuyuki Amano;Akira Maruoka
- 通讯作者:Akira Maruoka
Kenshi Matsuo, Tetsuya Koyama, Eiji Takimoto, Akira Maruoka: "Relationships between Horn Formulas and XOR-MDNF Formulas"IEICE Transactions. E87-D(2). 343-351 (2003)
Kenshi Matsuo、Tetsuya Koyama、Eiji Takimoto、Akira Maruoka:“Horn 公式与 XOR-MDNF 公式之间的关系”IEICE Transactions。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The Potential of the Approximation Method
近似方法的潜力
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kazuyuki Amano;Kazuyuki Amano;Kazuyuki Amano
- 通讯作者:Kazuyuki Amano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARUOKA Akira其他文献
MARUOKA Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARUOKA Akira', 18)}}的其他基金
Development of high accurate characteristic Galerkin scheme on CFD using NURBS basis functions
使用 NURBS 基函数开发 CFD 高精度特征伽辽金方案
- 批准号:
24560590 - 财政年份:2012
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical approach to self-constructive learning on subjects on computer science
计算机科学学科自我建构学习的实用方法
- 批准号:
20500760 - 财政年份:2008
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On-line learning algorithm for organizing data based on generalized entropy
基于广义熵的数据组织在线学习算法
- 批准号:
13480074 - 财政年份:2001
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational Methodology for Knowledge Discovery
知识发现的计算方法
- 批准号:
10143101 - 财政年份:1998
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (A)
Computational model for VLSI systems
VLSI 系统的计算模型
- 批准号:
60550252 - 财政年份:1985
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Construction of Bayesian Optimal Decision Tree Algorithm Using Metatree and Latent Class Tree by Information Theory
基于信息论的元树和潜在类树构建贝叶斯最优决策树算法
- 批准号:
23K03863 - 财政年份:2023
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a High-Speed and Low-Power IPS Processor Capable of Dynamic and Automatic Generation of Decision Tree Circuits
开发能够动态自动生成决策树电路的高速低功耗IPS处理器
- 批准号:
22K12032 - 财政年份:2022
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Building a rich and rigorous theory of decision tree learning
AF:小:构建丰富而严谨的决策树学习理论
- 批准号:
2224246 - 财政年份:2022
- 资助金额:
$ 10.43万 - 项目类别:
Standard Grant
Metabolomics with alternative decision tree-based machine learning methods for the prediction of cdk 4/6 inhibitor efficacy
使用基于替代决策树的机器学习方法的代谢组学用于预测 cdk 4/6 抑制剂功效
- 批准号:
21K08676 - 财政年份:2021
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of a risk prediction model of adverse drug reactions using decision tree analysis
利用决策树分析构建药品不良反应风险预测模型
- 批准号:
19K23791 - 财政年份:2019
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
An Integrative Approach to Drug Repositioning Using Decision Tree Based Machine Learning
使用基于决策树的机器学习进行药物重新定位的综合方法
- 批准号:
10112306 - 财政年份:2019
- 资助金额:
$ 10.43万 - 项目类别:
Prediction of and evacuation from flood disaster in snowmelt season based on Soil Water Index and decision tree model -A case study of Tomsk city, Russia-
基于土壤水分指数和决策树模型的融雪季节洪涝灾害预测与疏散——以俄罗斯托木斯克市为例-
- 批准号:
18KK0028 - 财政年份:2018
- 资助金额:
$ 10.43万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of a diagnostic learning system using decision tree
使用决策树开发诊断学习系统
- 批准号:
17K01134 - 财政年份:2017
- 资助金额:
$ 10.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Key factors characterizing working older men and women aged 65 years and over as revealed by Cluster analysis, Logistic regression and Decision tree methods
聚类分析、逻辑回归和决策树方法揭示了 65 岁及以上老年男性和女性特征的关键因素
- 批准号:
324429 - 财政年份:2015
- 资助金额:
$ 10.43万 - 项目类别:
A Decision Tree Model for Predicting Successful Trigger Point Injection Treatment of Chronic Neck Pain: A Tool for Clinicians
用于预测慢性颈部疼痛成功触发点注射治疗的决策树模型:临床医生的工具
- 批准号:
307714 - 财政年份:2013
- 资助金额:
$ 10.43万 - 项目类别:
Studentship Programs














{{item.name}}会员




