Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
基本信息
- 批准号:1802107
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Applied sciences are important in formulating and solving interesting mathematical problems. Conversely, researchers in science and engineering fields often seek improvements in both theory and practice via mathematical arguments to explain and confirm experimental results. This project involves partial differential equations, geometric function theory, calculus of variations and related problems that arise in real-world applications including: nonlinear elasticity, microstructure of materials, and crystals to name a few. The proposed physical interpretations of mathematical objects, like Sobolev homeomorphisms that are viewed as elastic deformations, have proven useful in understanding and solving challenging problems in nonlinear elasticity. The primary aim here is to develop new, and improve old, methods to meet these challenges. The new mathematical concepts such as free Lagrangians allow one to establish the existence of traction free energy-minimal deformations. Further advances in Hopf-Laplace differentials could lead to predictions of the formation of cracks in deformations, and in understanding the principle of interpenetration of matter. Theoretical prediction of failure of elastic bodies caused by cracks would have a broad impact to both mathematical analysts and researchers in the engineering fields. The research topics in this project, although in general mathematically challenging, also take on questions that are suitable for graduate students. The ultimate goal is to attract graduate students and young scholars, both women and men, to geometric function theory with a wide range of applications, to encourage them to participate in the interdisciplinary efforts, and to prepare and help them to develop meaningful interactions with physicists and engineers. The principal investigator is currently working with Jani Onninen on a joint monograph designed for researchers as well as graduate students in geometric function theory.The principal investigator has a history of strong efforts to gain from an interplay between pure and applied mathematics. It resulted in the solution of several mathematical problems such as the Nitsche conjecture in the theory of minimal surfaces, the Evans-Ball conjecture on approximation of Sobolev mappings with diffeomorphisms, the novel concept of free Lagrangians in the calculus of variations, formation of cracks along trajectories of Hopf differentials, rigorous description of the phenomenon of interpenetration of matter, and the partial answers in the dimension two to the legendary Morrey's conjecture on quasiconvexity of the rank-one convex functionals; in particular, sharp inequalities of Burkholder's stochastic integrals. The latter include the complex Beurling-Ahlfors singular integral transform. The eminence of this transform lies in the fact that it connects two homotopy classes of the first order elliptic systems in the complex plane: one whose solutions are orientation preserving mapping and the other with orientation reversing solutions. The notoriously difficult problem has been to identify the Lp-norm of the Beurling-Ahlfos transform. The status of the problem goes on as never before.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应用科学在制定和解决有趣的数学问题方面很重要。相反,科学和工程领域的研究人员经常通过数学论证来解释和证实实验结果,以寻求理论和实践的改进。该项目涉及偏微分方程,几何函数理论,变分法和现实世界中出现的相关问题,包括:非线性弹性,材料的微观结构和晶体仅举几例。所提出的数学对象的物理解释,如被视为弹性变形的索伯列夫同胚,已被证明有助于理解和解决非线性弹性中的挑战性问题。这里的主要目标是开发新的,并改进旧的方法,以应对这些挑战。新的数学概念,如自由拉格朗日允许建立牵引自由能最小变形的存在。霍普夫-拉普拉斯微分的进一步发展可能导致对变形中裂纹形成的预测,并有助于理解物质相互渗透的原理。裂纹引起的弹性体破坏的理论预测将对数学分析和工程领域的研究人员产生广泛的影响。在这个项目中的研究课题,虽然在一般数学上具有挑战性,也采取了适合研究生的问题。最终目标是吸引研究生和青年学者,无论男女,几何函数理论与广泛的应用,鼓励他们参与跨学科的努力,并准备和帮助他们发展有意义的互动与物理学家和工程师。首席研究员目前正在与Jani Onninen合作,为研究人员和研究生设计了一本专着,在几何函数理论。首席研究员有一个强大的努力,从纯数学和应用数学之间的相互作用中获益的历史。它导致了几个数学问题的解决,如极小曲面理论中的Nitsche猜想,关于Sobolev映射的近似的Evans-Ball猜想,变分法中自由拉格朗日的新概念,沿着Hopf微分沿着轨道的裂缝的形成,对物质相互渗透现象的严格描述,和部分答案的传说中的Morrey的猜想在二维拟凸性的秩一凸泛函,特别是,尖锐的不等式Burkholder的随机积分。后者包括复Beurling-Ahlfors奇异积分变换。这个变换的隆起之处在于它连接了复平面上一阶椭圆方程组的两个同伦类:一个是方向保持映射的同伦类,另一个是方向反转映射的同伦类。众所周知的困难问题是确定Beurling-Ahlfos变换的Lp范数。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Dirichlet principle for inner variations
内变分的狄利克雷原理
- DOI:10.1007/s00208-020-02133-y
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Iwaniec, Tadeusz;Onninen, Jani
- 通讯作者:Onninen, Jani
Singularities in L^p-quasidisks
L^p-准星中的奇点
- DOI:10.5186/aasfm.2021.4665
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Iwaniec, Tadeusz;Onninen, Jani;Zhu, Zheng
- 通讯作者:Zhu, Zheng
Creating and Flattening Cusp Singularities by Deformations of Bi-conformal Energy
通过双共形能量的变形来创建和压平尖点奇点
- DOI:10.1007/s12220-019-00351-8
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Iwaniec, Tadeusz;Onninen, Jani;Zhu, Zheng
- 通讯作者:Zhu, Zheng
A Neohookean Model of Plates
Neohookean 板块模型
- DOI:10.1137/20m1329305
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Iwaniec, Tadeusz;Onninen, Jani;Pankka, Pekka;Radice, Teresa
- 通讯作者:Radice, Teresa
Monotone Hopf-Harmonics
单调霍普夫谐波
- DOI:10.1007/s00205-020-01518-2
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Iwaniec, Tadeusz;Onninen, Jani
- 通讯作者:Onninen, Jani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
${\cal H}^1$ -estimates of Jacobians by subdeterminants
- DOI:
10.1007/s00208-002-0341-5 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Tadeusz Iwaniec;Jani Onninen - 通讯作者:
Jani Onninen
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Dynamics of Quasiconformal Fields
- DOI:
10.1007/s10884-010-9203-0 - 发表时间:
2010-12-24 - 期刊:
- 影响因子:1.300
- 作者:
Tadeusz Iwaniec;Leonid V. Kovalev;Jani Onninen - 通讯作者:
Jani Onninen
On Minimisers of $$L^p$$ -mean Distortion
- DOI:
10.1007/s40315-014-0063-1 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Tadeusz Iwaniec;Gaven Martin;Jani Onninen - 通讯作者:
Jani Onninen
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
- 批准号:
0301582 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
- 批准号:
9401104 - 财政年份:1994
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
量化 domain 的拓扑性质
- 批准号:11771310
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
- 批准号:30470298
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A geometric framework approach to understand multi-metal toxicity on individual organisms to evaluate relative risks and benefits of pollution and mit
一种几何框架方法,用于了解多金属对个体生物体的毒性,以评估污染和减排的相对风险和效益
- 批准号:
2881375 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Studentship
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
- 批准号:
DP220101808 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
EAGER: Robust Reasoning using a Geometric Approach to SAT and PSAT
EAGER:使用几何方法进行 SAT 和 PSAT 的稳健推理
- 批准号:
2152454 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10663798 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10342966 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
A Geometric Approach to Simulating Knotting and Entanglement of Slender Objects
模拟细长物体打结和缠结的几何方法
- 批准号:
RGPIN-2021-03733 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Lie superalgebra representations: a geometric approach
李超代数表示:几何方法
- 批准号:
DP220102530 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
Non-equilibrium dynamics of integrable quantum systems: An algebro-geometric approach to quantum solitons with exact numerical solutions
可积量子系统的非平衡动力学:具有精确数值解的量子孤子的代数几何方法
- 批准号:
21K03398 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)