Mechanism Investigations and Control of Phonon-Excitation Anneal Process for Ultra-Shallow Junction Formation

超浅结形成的声子激发退火过程的机理研究和控制

基本信息

项目摘要

Formation of ultra-shallow junctions (10-30 nm) is required for fabrication of CMOS devices in next-generation ULSIs. State-of-the-art technologies for the dopant activation are based on thermal processes such as rapid thermal annealing (RTA) and laser thermal annealing with surface melting, which are constrained by the thermal budget to cause unwanted transient diffusion of the dopants into deeper region and/or in lateral direction. This research has been carried out to investigate the non-equilibrium (non-thermal) anneal processes of the implanted dopants in the shallow region by directly exciting phonons and/or interatomic bonding states as one of the effective low-temperature formation technology of the ultra-shallow junctions. Major results are summarized as follows. 1) Pomp-probe reflectivity measurements showed that the ultra-short pulse laser irradiation induced phonon vibrations followed by relaxation of the optically excited carriers, in which the phonon vibration was enhanced nonlinearly with laser intensities. 2) Cross-sectional high-resolution TEM observations confirmed successful re-crystallization of the implanted layer by the ultra-short pulse laser irradiation. 3) Sheet resistance of the implanted layer was controlled by the laser irradiation conditions, in which the sheet resistance was confirmed to show close correlation with the atomic-scale nanostructure. 4) Feasibility of the sheet resistance as low as 400 ohms/sq. was demonstrated for the 0.5-keV B implanted samples. 5) As one of the effective surface excitation processes to control defects after the laser irradiation, plasma technologies were developed for generation and control of the large-area non-equilibrium plasmas, in which feasibility of the 300-mm wafer processes was demonstrated.
下一代 ULSI 中的 CMOS 器件的制造需要形成超浅结(10-30 nm)。最先进的掺杂剂激活技术基于热工艺,例如快速热退火 (RTA) 和带有表面熔化的激光热退火,这些工艺受到热预算的限制,会导致掺杂剂不必要的瞬时扩散到更深的区域和/或横向。本研究旨在研究通过直接激发声子和/或原子间键合态在浅区注入掺杂剂的非平衡(非热)退火过程,作为超浅结的有效低温形成技术之一。主要结果总结如下。 1) 探针反射率测量表明,超短脉冲激光照射引起声子振动,随后光激发载流子弛豫,其中声子振动随激光强度非线性增强。 2) 横截面高分辨率TEM观察证实超短脉冲激光照射成功地实现了注入层的再结晶。 3)注入层的薄层电阻由激光照射条件控制,其中薄层电阻被证实与原子级纳米结构表现出密切的相关性。 4) 方块电阻低至 400 欧姆/平方的可行性。已针对 0.5 keV B 植入样品进行了演示。 5)作为控制激光辐照后缺陷的有效表面激发工艺之一,等离子体技术被开发用于大面积非平衡等离子体的产生和控制,其中证明了300毫米晶圆工艺的可行性。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Standing-Wave-Free Large-Area Inductively Coupled Plasmas with Multiple Low-Inductance Antenna Modules - Novel Plasma Technologies toward Meters-Scale FPD Processing -
具有多个低电感天线模块的无驻波大面积电感耦合等离子体 - 面向米级 FPD 处理的新型等离子体技术 -
PHOTON-INDUCED PHONON EXCITATION PROCESS AS NONEQUILLIBRIUM SUBSURACE MODIFICATION OF ION-IMPLANTED NANO-SCALE LAYER FOR ULTRA-SHALLOW JUNCTION FORMATION
光子诱导声子激发过程作为离子注入纳米级层的非平衡亚表面改性以形成超浅结
Nonequilibrium Activation of Boron-Implanted Ultra-Shallow Junctions By Femtosecond-Laser Induced Phonon Excitation Process
飞秒激光诱导声子激发过程非平衡激活硼注入超浅结
次世代半導体接合形成
下一代半导体结形成
Standing-Wave-Free Large-Area Inductively Coupled Plasmas with Multiple Low-Inductance Antenna Modules
具有多个低电感天线模块的无驻波大面积电感耦合等离子体
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SETSUHARA Yuichi其他文献

SETSUHARA Yuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SETSUHARA Yuichi', 18)}}的其他基金

Development of novel function-controlled inorganic/organic layer-formationtechnology through integrated reaction studies on plasma interactions withnanolayers at surface and interface
通过等离子体与表面和界面纳米层相互作用的综合反应研究,开发新型功能控制的无机/有机层形成技术
  • 批准号:
    23656465
  • 财政年份:
    2011
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of novel plasma-enhanced processes for low-temperature formation of high quality oxide semiconductor films
开发用于低温形成高质量氧化物半导体薄膜的新型等离子体增强工艺
  • 批准号:
    23360325
  • 财政年份:
    2011
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Plasma Technologies for Advanced Plasma-Based Ion Implantation Processes Using Internal-Antenna-Driven Large-Volume RF Plasma Sources
使用内部天线驱动的大容量射频等离子体源开发先进等离子体离子注入工艺的等离子体技术
  • 批准号:
    13555199
  • 财政年份:
    2001
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of highly reactive high-density plasma sputtering process with excitation of helicon wave for synthesis of superhard nitride films
开发用于合成超硬氮化物薄膜的螺旋波激发高反应性高密度等离子体溅射工艺
  • 批准号:
    10558065
  • 财政年份:
    1998
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Control theory of photo-induced dynamics in correlated electron systems utilizing phonon-excitation
利用声子激发的相关电子系统光致动力学控制理论
  • 批准号:
    23KJ0883
  • 财政年份:
    2023
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Efficient terahertz photovoltaic effect by phonon excitation
通过声子激发实现高效太赫兹光伏效应
  • 批准号:
    22K18684
  • 财政年份:
    2022
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Modeling the Effects of Valence Charge Reorganization and Phonon Excitation in UES data
对 UES 数据中价电荷重组和声子激发的影响进行建模
  • 批准号:
    539329-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Mode-selective phonon excitation in the materials of energy functionality using mid-infrared free-electron laser
使用中红外自由电子激光在能量功能材料中进行模式选择性声子激发
  • 批准号:
    18K05295
  • 财政年份:
    2018
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-process nano surface processing control by using time resolved coherent phonon excitation on semiconductor target with
通过在半导体靶上使用时间分辨相干声子激发进行过程中纳米表面加工控制
  • 批准号:
    25289017
  • 财政年份:
    2013
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Photo-induced phase transition by electron or phonon excitation in transition metal oxides
过渡金属氧化物中电子或声子激发引起的光诱导相变
  • 批准号:
    20740172
  • 财政年份:
    2008
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
DYNAMICS OF QUANTUM FLUCTUATION STUDIED BY COHERENT PHONON EXCITATION METHOD
相干声子激发法研究量子涨落动力学
  • 批准号:
    14204029
  • 财政年份:
    2002
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ESTABLISHMENT OF COHERENT PHONON EXCITATION --as a new method for phase transition study--
相干声子激发的建立——作为相变研究的新方法——
  • 批准号:
    10044050
  • 财政年份:
    1998
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Control of materials by coherent phonon excitation
通过相干声子激发控制材料
  • 批准号:
    09640491
  • 财政年份:
    1997
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
U.S.-Japan Cooperative Research: Study of Phase Transition Dynamics by Coherent Phonon Excitation
美日合作研究:相干声子激发研究相变动力学
  • 批准号:
    9418058
  • 财政年份:
    1995
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了