Mathematical Models of Interfacial Motion of Crystalline Materials

晶体材料界面运动的数学模型

基本信息

  • 批准号:
    16340021
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Kobayashi had benn investigated the problem for the mathematical model of grain boundary in polycrystalline materials since the middle of 90's, and completed 2D model already. The main goal of this research is to extend Kobayashi-Warren-Carter model to 3D model, which includes essential difficulties because the orientation variable must be extended from SO(2)-valued to SO(3)-valued. Therefore we intended to formuLate the 3D model mathematically, study mathematical theories concerning to it, ・and develop the technique of numerical simulation.We first construct the SO(3)-valued singular diffusivity equation in one dimensional and two dimensional space, and simulation codes. Then we compare the 2 expressions for SO(3); local coordinates (Rodrigues, Vector) and imbedding to 9 dimensional Euclidean space R^{9}, and concluded that the imbedding method is the way we have to go. According to this decision we first developed a 3D numerial code in which the values of orientation variables are kept in SO(3) by means of the normal projection to SO(3) and some special penalty, function. By coupling this orientation equation with the phase field equation which describes the solid-liquid phase dynamics, we completed the model and 3D numerical code which can describe the while process from nucleation, solidification, formation of grain boundaries and growth of the grains accompanied by the motion of grain boundaries.Finally in order to include the symmetries of crystalline structure to our model, we took the orientation space as the homogeneous space (the space obtained by dividing SO(3) by symmetry group) and tried to imbed.it to some (higher dimensional) Euclidian space. However we found it is very difficult to obtain the concrete imbedding in the situation where we are interested in.Our research has interesting side effect, which is a construction of mathematical model of cleavage which can be considered (in some sense) to be a reverse process of coarsening of grains.
小林从90年代中期开始研究多晶材料晶界的数学模型问题,并已完成二维模型。本研究的主要目的是将Kobayashi-Warren-Carter模型推广到三维模型,其中的难点在于方向变量必须从SO(2)值推广到SO(3)值。为此,我们对三维模型进行了数学表述,研究了与之相关的数学理论,发展了数值模拟技术,首先构造了一维和二维空间的SO(3)值奇异扩散方程,并编制了模拟程序。然后我们比较了SO(3)的两种表达方式:局部坐标(Rodrigues,Vector)和嵌入到9维欧氏空间R^{9},得出嵌入方法是我们必须走的路。根据这一决定,我们首先发展了一种三维数值码,它通过SO(3)的法向投影和一些特殊的罚函数,使方向变量的值保持在SO(3)中。通过将该取向方程与描述固液相动力学的相场方程相耦合,完成了描述从形核、凝固、晶界形成到晶粒长大并伴随晶界运动的三维数值模拟,最后为了将晶体结构的对称性纳入到我们的模型中,我们把定向空间当作齐次空间(SO(3)除以对称群得到的空间),并试图把它推广imbed.it到某些(高维)欧氏空间.然而我们发现在我们感兴趣的情况下很难获得混凝土的嵌入。我们的研究有一个有趣的副作用,那就是建立了解理的数学模型,在某种意义上,解理可以被认为是晶粒粗化的逆过程。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform Local Solvability for the Navier-Stokes Equations with the Coriolis Force
  • DOI:
    10.4310/maa.2005.v12.n4.a2
  • 发表时间:
    2005-12
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Y. Giga;K. Inui;A. Mahalov;Shin’ya Matsui
  • 通讯作者:
    Y. Giga;K. Inui;A. Mahalov;Shin’ya Matsui
Modeling the formation and dynamics of polycrystals in 3D
Fddd structure in AB-type diblock copolymers
AB型二嵌段共聚物中的Fddd结构
Birkhauser, Basel-Boston-Berlin
伯克豪瑟,巴塞尔-波士顿-柏林
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.;Matsuki.;M.;Olsson;早川貴之;Eiichi Bannai;Y.Giga
  • 通讯作者:
    Y.Giga
Signal propagation and failure in one-dimensional FitzHugh-Nagumo equations with periodic stimuli.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Ryo其他文献

Phase Field Method and Its Application to Biology
相场法及其在生物学中的应用
  • DOI:
    10.2142/biophys.58.216
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LEE S. Seirin;KOBAYASHI Ryo
  • 通讯作者:
    KOBAYASHI Ryo

KOBAYASHI Ryo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Ryo', 18)}}的其他基金

Mathematical study for unified understanding of legged locomotion from the evolutionary view point
从进化的角度统一理解腿运动的数学研究
  • 批准号:
    25610033
  • 财政年份:
    2013
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical framework for pattern formation of biological systems
生物系统模式形成的数学框架
  • 批准号:
    23654036
  • 财政年份:
    2011
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Effect of overexposure to estrogen in fetal period on immediate allergic reaction
胎儿期过度接触雌激素对速发型过敏反应的影响
  • 批准号:
    22790132
  • 财政年份:
    2010
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mathematical Study of Pattern Formation and Information in Biological Systems
生物系统中模式形成和信息的数学研究
  • 批准号:
    19340023
  • 财政年份:
    2007
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Alternative creditor -protection device instead of Legal Capital System
替代法定资本制度的债权人保护机制
  • 批准号:
    14520053
  • 财政年份:
    2002
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of the phase field model designed for recrystallization process
再结晶过程相场模型的研究
  • 批准号:
    13640095
  • 财政年份:
    2001
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microsatellite instability in mononuclear cells from non-tumorigenetic human tonsils and its forensic applications
非致瘤性人扁桃体单核细胞的微卫星不稳定性及其法医学应用
  • 批准号:
    10670402
  • 财政年份:
    1998
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elastic Effects in the Phase Separation of the System with Finite Size
有限尺寸体系相分离中的弹性效应
  • 批准号:
    09650074
  • 财政年份:
    1997
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of virus DNA polymorphisms and its application to paternity testing
病毒DNA多态性研究及其在亲子鉴定中的应用
  • 批准号:
    05670400
  • 财政年份:
    1993
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Research Grant
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
  • 批准号:
    2309538
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
CAREER: Decipher the Mechanism of High-performance Novel Memristors by Phase-field Simulation
职业:通过相场仿真解读高性能新型忆阻器的机制
  • 批准号:
    2340595
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
First-principles based machine learning phase field model for structural and battery materials
基于第一性原理的结构和电池材料机器学习相场模型
  • 批准号:
    23K13537
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
  • 批准号:
    23K03180
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NewPhaseBio - A new generation of phase field-based models to predict the degradation of biomaterials
NewPhaseBio - 新一代基于相场的模型,用于预测生物材料的降解
  • 批准号:
    EP/Y028236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Fellowship
Study and modelling of phase-transformation in metals and al loys, incorporating computer modelling with phase-field mode lling.
金属和合金相变的研究和建模,将计算机建模与相场建模相结合。
  • 批准号:
    2883978
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Studentship
Phase-Field Fracture Modelling for Lifetime Assessment of Thermal Barrier Coatings
用于热障涂层寿命评估的相场断裂建模
  • 批准号:
    2787426
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Studentship
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了