Elastic Effects in the Phase Separation of the System with Finite Size
有限尺寸体系相分离中的弹性效应
基本信息
- 批准号:09650074
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(a) Usual phase field models have an essential short coming that they cannot describe the formation of poly-crystals since they are lacking in the information of orientation. We proposed a vectorized phase field model which enables us to simulate a simultaneous crystallization of many particles with various orientations and a formation of grain boundaries.(b) Recrystallization takes place through the two basic processes, say, (I) grain boundary migration and (ii) grain rotation. Almost all the model of recrystallization handle the process (I) only. We proposed a totally new phase field model which can treat both of the processes (I) and (il) simultaneously.c In the above recrystallization model the equation for the evolution of angle variable expresses a non-local interaction by introducing a new mathematical concept "singular diffusivity" We justified this new equation and analyzed it mathematically.(d) It is well known that the mixture of granular materials can segregate in the rotating cylinder. We investigated this phenomena through experiments and modeling and found that it is caused by the property of strong segregation in the suface flow of binary mixture of granular materials.(e) A mathematical model of step dynamics on the facet of growing crystals are presented. This model is able to describe the motion of steps caused by the arbitrary number of screw dislocations.(f) Mathematical structure which produces self-replicating patterns were made clear by the approach of experimental mathematics. We demonstrated that the ordered saddle node bifurcation branches and the paths connecting them are essential for the formation of self-replicating patterns.
(a)晶体相场模型有一个本质的缺点,即缺乏取向信息,不能描述多晶的形成。我们提出了一个矢量化的相场模型,使我们能够模拟同时结晶的许多颗粒具有不同的取向和晶界的形成。(b)再结晶通过两个基本过程发生,即(I)晶界迁移和(ii)晶粒旋转。几乎所有的再结晶模型都只考虑了(I)过程。我们提出了一个全新的相场模型,它可以同时处理过程(I)和(II)。在上述再结晶模型中,通过引入一个新的数学概念“奇异扩散率”,角变量的演化方程表达了一种非局部相互作用。(d)众所周知,颗粒材料的混合物可以在旋转的圆筒中分离。本文通过实验和模拟研究发现,这是由于二元颗粒混合物表面流动的强烈分凝特性造成的。(e)本文提出了生长晶体端面台阶动力学的数学模型。该模型能够描述任意数量螺位错引起的台阶运动。(f)通过实验数学的方法,阐明了产生自我复制模式的数学结构。我们证明了有序鞍结分岔分支和连接它们的路径是形成自复制模式的必要条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.-H. Giga, Y. Gigi and R. Kobayashi: "Very Singular Diffusion Equations"to appear in Proceeding of Taniguchi sympopsium. Nara 1998, ed. T. Sunada.
M.-H。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nishiura: "A Skeleton Structure of Self-repricating Dynamics"Physica D. 130. 73-104 (1999)
Y.Nishiura:“自我复制动力学的骨架结构”Physica D. 130. 73-104 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Kobayashi: "Equations with singular diffusivity"J.Stat.Phys.. 95. 1187-1220 (1999)
R.Kobayashi:“奇异扩散系数方程”J.Stat.Phys.. 95. 1187-1220 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Yanagita: "A Three-Dimensional Cellular Automaton Model of Segregation of Granular Materials in a Rotating Cylinder"Rhys.Rev.Lett. 82. 3488-3491 (1999)
T.Yanagita:“旋转圆筒中颗粒材料分离的三维元胞自动机模型”Rhys.Rev.Lett。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Kobayashi, J.A.Warren and W.C.Carter: "Mathematical Models for Solidification and Grain Boundary Formation" Complex Chemical Systems in Polymer Matrices. (to appear).
R.Kobayashi、J.A.Warren 和 W.C.Carter:“凝固和晶界形成的数学模型”聚合物基体中的复杂化学系统。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Ryo其他文献
Phase Field Method and Its Application to Biology
相场法及其在生物学中的应用
- DOI:
10.2142/biophys.58.216 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
LEE S. Seirin;KOBAYASHI Ryo - 通讯作者:
KOBAYASHI Ryo
KOBAYASHI Ryo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Ryo', 18)}}的其他基金
Mathematical study for unified understanding of legged locomotion from the evolutionary view point
从进化的角度统一理解腿运动的数学研究
- 批准号:
25610033 - 财政年份:2013
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical framework for pattern formation of biological systems
生物系统模式形成的数学框架
- 批准号:
23654036 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Effect of overexposure to estrogen in fetal period on immediate allergic reaction
胎儿期过度接触雌激素对速发型过敏反应的影响
- 批准号:
22790132 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mathematical Study of Pattern Formation and Information in Biological Systems
生物系统中模式形成和信息的数学研究
- 批准号:
19340023 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Models of Interfacial Motion of Crystalline Materials
晶体材料界面运动的数学模型
- 批准号:
16340021 - 财政年份:2004
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Alternative creditor -protection device instead of Legal Capital System
替代法定资本制度的债权人保护机制
- 批准号:
14520053 - 财政年份:2002
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of the phase field model designed for recrystallization process
再结晶过程相场模型的研究
- 批准号:
13640095 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microsatellite instability in mononuclear cells from non-tumorigenetic human tonsils and its forensic applications
非致瘤性人扁桃体单核细胞的微卫星不稳定性及其法医学应用
- 批准号:
10670402 - 财政年份:1998
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of virus DNA polymorphisms and its application to paternity testing
病毒DNA多态性研究及其在亲子鉴定中的应用
- 批准号:
05670400 - 财政年份:1993
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
First-principles based machine learning phase field model for structural and battery materials
基于第一性原理的结构和电池材料机器学习相场模型
- 批准号:
23K13537 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
- 批准号:
2133373 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Theoretical and numerical analysis for a phase-field model describing the crack growth phenomenon
描述裂纹扩展现象的相场模型的理论和数值分析
- 批准号:
19K14605 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Phase-Field Model of Inhomogeneous Ferroelectric Crystals Under Ultrafast Stimuli
超快刺激下非均匀铁电晶体的相场模型
- 批准号:
1744213 - 财政年份:2018
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Development of a computational fluid dynamics method based on a phase-field model for simulation of microscopic two-phase flows with phase change through porous media
开发基于相场模型的计算流体动力学方法,用于模拟多孔介质中相变的微观两相流
- 批准号:
26420128 - 财政年份:2014
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of GPGPU technique to phase-field model
GPGPU技术在相场模型中的应用
- 批准号:
25820325 - 财政年份:2013
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of crack propagation phenomena of phase-field model
相场模型裂纹扩展现象分析
- 批准号:
23540174 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of coupling scheme for micro- and macroscopic mechanics using phase field model
使用相场模型开发微观和宏观力学的耦合方案
- 批准号:
23560079 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale Phase-field Model Based on Conservation Laws and Recrystallization Simulation
基于守恒定律和再结晶模拟的多尺度相场模型
- 批准号:
21560101 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of 475℃Embrittlement in Stainless Steel Welds using Phase Field Model
利用相场模型预测不锈钢焊缝475℃脆化
- 批准号:
21560745 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)