Research on Spectra of Perron-Frobenius operator generated by dynamical systm and random numbers

动力系统与随机数生成Perron-Frobenius算子谱的研究

基本信息

  • 批准号:
    16540121
  • 负责人:
  • 金额:
    $ 2.27万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

We have studied the spectra of the Perron-Frobenius operator associated with dynamical systems. The method is to define the generating function associated with the dynamical systems, then construct renewal equations on generating functions.Then we can determine a matrix which we call Fredholm matrix. The zeros of the determinant of this matrix determine the ergodic property of the dynamical system, such as ergodicity, mixingity and decay rate of correlations of dynamical systems.Using this method, we could study rotaion numbers of dynamical system or large deviations. We can even calculate the Hausdorff dimension of fractals generated by dynamical systems.Especially, we have studied the discrepancy of random numbers generated by dynamical systems. For one dimensional cases, we can construct a theorem how to determine the discrepancy of random numbers. Using this theorem, we can determine the low discrepancy sequences generated by one dimensional dynamical systems.Recently, the progress of mathematical finance and so on, we need the higher dimensional low discrepancy sequences. However, for higher dimensional cases, we have only constructed abstract theorem to determine the spectra of the Perron-Frobenius operateor. Therefore, we have tried examples of low discrepancy sequences, and get two and three dimensional cases.
我们研究了与动力系统相关的Perron-Frobenius算子的谱。该方法首先定义与动力系统相关的生成函数,然后在生成函数上构造更新方程。然后我们可以确定一个矩阵我们称之为弗雷德霍姆矩阵。该矩阵行列式的零点决定了动力系统的遍历性,如遍历性、混合性和相关关系的衰减率。用这种方法可以研究动力系统的旋转数或大的偏差。我们甚至可以计算由动力系统产生的分形的豪斯多夫维数。特别地,我们研究了由动力系统产生的随机数的差异。对于一维情况,我们可以构造一个判定随机数的差异的定理。利用这一定理,我们可以确定一维动力系统产生的低差序列。近年来,随着数学金融等领域的发展,我们需要高维低差序列。然而,对于高维情况,我们只构造了抽象定理来确定Perron-Frobenius算子的谱。因此,我们尝试了低差异序列的例子,并得到了二维和三维的情况。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence rate of 2-dimensional low discrepancy Sequences (with Yuko Ichikawa)
二维低差异序列的收敛率(与 Yuko Ichikawa 合作)
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
よくわかる確率統計の基本と仕組み
易于理解的概率统计基础知识和机制
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森 真;小川 重義
  • 通讯作者:
    小川 重義
Mixing properties and pseudo random sequences
混合属性和伪随机序列
Perron-Frobenius operator and low discrepancy sequences ergodic.
Perron-Frobenius 算子和低差异序列遍历。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hausdorff dimension of trees generated by piecewise linear transformations
分段线性变换生成的树的豪斯多夫维数
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makoto Mori
  • 通讯作者:
    Makoto Mori
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORI Makoto其他文献

MORI Makoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORI Makoto', 18)}}的其他基金

Establishment of Detection Method of Endocrine Disrupter by Avian Yolk-Related Gene Expression
禽类卵黄相关基因表达检测内分泌干扰物方法的建立
  • 批准号:
    20580307
  • 财政年份:
    2008
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the spectrum of Perron-Frobenius operator and pseudo random number associated with higher dimensional dynamical system
高维动力系统Perron-Frobenius算子谱及伪随机数研究
  • 批准号:
    20540139
  • 财政年份:
    2008
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Secretion and Fibril Formation of Vitelline Membrane from Avian Granulosa cells
禽颗粒细胞卵黄膜的分泌和原纤维形成
  • 批准号:
    15380191
  • 财政年份:
    2003
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Perron-Frobenius operator and fractals
Perron-Frobenius算子与分形研究
  • 批准号:
    14540189
  • 财政年份:
    2002
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biosynthesis of avian perivitelline membrane ZPC protein and regulation of sperm receptor activity
禽卵周膜ZPC蛋白的生物合成及精子受体活性的调节
  • 批准号:
    13660284
  • 财政年份:
    2001
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on ergodic theory and Perron-Frobenius operator
遍历理论与Perron-Frobenius算子研究
  • 批准号:
    12640190
  • 财政年份:
    2000
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biosynthesis of avian perivitelline membrane ZPC protein and regulation of sperm receptor activity
禽卵周膜ZPC蛋白的生物合成及精子受体活性的调节
  • 批准号:
    11660280
  • 财政年份:
    1999
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification and biosynthesis of sperm receptor in quail oocyte
鹌鹑卵母细胞精子受体的鉴定及生物合成
  • 批准号:
    09660300
  • 财政年份:
    1997
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparative biochemical study on glucocorticoid metabolism in mammary gland and kidney
乳腺和肾脏糖皮质激素代谢的比较生化研究
  • 批准号:
    07806037
  • 财政年份:
    1995
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Signal Transduction of Growth and Differentiation of Avian Granulosa cells
禽颗粒细胞生长和分化的信号转导分析
  • 批准号:
    05806035
  • 财政年份:
    1993
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interplay between Ergodic Theory, Additive Combinatorics and Ramsey Theory
遍历理论、加法组合学和拉姆齐理论之间的相互作用
  • 批准号:
    DP240100472
  • 财政年份:
    2024
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Discovery Projects
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Continuing Grant
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Discovery Grants Program - Individual
Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
  • 批准号:
    2154414
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Standard Grant
Hyperbolic Dynamics in Physical Systems and Ergodic Theory
物理系统中的双曲动力学和遍历理论
  • 批准号:
    2154725
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Standard Grant
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
  • 批准号:
    2153053
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Standard Grant
Effective Ergodic Theory: Parabolic and Hyperbolic
有效的遍历理论:抛物线和双曲线
  • 批准号:
    2154208
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Standard Grant
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
  • 批准号:
    RGPIN-2020-04245
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Discovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
  • 批准号:
    RGPIN-2017-06521
  • 财政年份:
    2022
  • 资助金额:
    $ 2.27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了