Research on arithmetic and geometry for algebraic varieties in positive characteristic.

正特性代数簇的算术和几何研究。

基本信息

  • 批准号:
    17540027
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

The purposes of this research are1) deep study of the algebraic varieties in positive characteristic, especially, elliptic (qasi-elliptic) surfaces, K3 surfaces and Calabi-Yau threefolds2) to give a new insight for the theory of singularities in positive characteristic.For these 3 years research term, we got the following advances related with the above purposes.1) We gave new examples for non-liftable Calabi-Yau threefolds in characteristic both 2 and 3.2) In the process on the construction above, we investigated the quasi-elliptic surfaces deeply, and we got various new 3-dimensional raional singularities which have crepant resolutions by giving the explicit resolution processes.3) By deep study on the moduli of 2-dimensional rational double points, we fond NEW pathological phenomena in 3-dimensional singularities, which must give a progress on the study of 3-dimensional canonical singularities in positive characteristic.Each results play an important role on the research of algebraic varieties in positive characteristic. We are going to pursue further study on these subjects.We also got the explicit relation between a deformation of a singularities of type E_8 and the Mordell-Weil lattices in characteristic 2. As an application of this, we gave the explicit construction of the universal family of moduli space of supersingular K3 surfaces in characteristic 2.Finally, we also studied the relationship between the theory of Mordell-Weil lattices and the index calculus attack to the elliptic curve cryptosystems, but we could not get the useful strategy for the attack.
本文的研究目的是:1)深入研究正特征的代数簇,特别是椭圆代数簇(拟椭圆)曲面、K3曲面和Calabi-Yau三重曲面2),为正特征奇点理论提供了新的见解。与上述结果相关,我们得到了以下进展:1)给出了特征2和3中不可升的Calabi-Yau三重数的新例子; 2)在上述构造过程中,我们对拟椭圆曲面进行了深入的研究,通过给出显式的分解过程,得到了各种新的具有不同分解的三维有理奇点。3)通过对二维有理二重点模的深入研究,发现了三维奇点中的新的病态现象,这些结果对正特征的代数簇的研究具有重要的意义。我们还得到了E_8型奇点的形变与特征为2的Mordell-Weil格之间的显式关系。作为应用,我们给出了特征为2的超奇异K3曲面的模空间的泛族的显式构造。最后,我们还研究了Mordell-Weil格理论与椭圆曲线密码体制的指数演算攻击之间的关系,但没有得到有用的攻击策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calabi-Yau threefolds arising from fiber products of rational quasi-elliptic surfaces. I.
Calabi-Yau 三重由有理准椭圆表面的纤维产物产生。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hirokado;Masayuki
  • 通讯作者:
    Masayuki
Deformation of singularitiy of type E_8 and Mordell-Weil lattices in characteristic 2
特征2中E_8型和Mordell-Weil晶格奇点的变形
Calabi-Yau threefolds from fiber products of quasi-elliptic surfaces
Calabi-Yau 三倍来自准椭圆表面的纤维产品
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuo;Saito
  • 通讯作者:
    Saito
準楕円曲面の積から得られる3次元Calabi-Yau多様体について
关于由准椭圆曲面乘积得到的三维 Calabi-Yau 流形
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Hirokado;et al.;N. Saito;齋藤 夏雄
  • 通讯作者:
    齋藤 夏雄
ある種の正標数Calabi-Yau多様体について、I
对于一些正特征 Calabi-Yau 流形,我
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuo;Saito;齋藤 夏雄;廣門 正行;齋藤 夏雄;伊藤 浩行
  • 通讯作者:
    伊藤 浩行
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITO Hiroyuki其他文献

Down-regulation of CYGB expression by promoter methylation is associated with hepatocellular carcinoma progression
启动子甲基化下调 CYGB 表达与肝细胞癌进展相关
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MAWATARI Fumihiro;SHIMIZU Tadashi;MIYAAKI Hisamitsu;ARIMA Tetsuhiko;FUKUDA Sachiko;KITA Yoshiko;FUKAHORI Aiko;ITO Hiroyuki;MATSUKI Kei;IKEMATSU Yoshito;RYU Nobutoshi;NAKAO Kazuhiko;Hoang Hai
  • 通讯作者:
    Hoang Hai
AN OPERATION SUPPORTING SYSTEM FOR HYDROELTCTRIC DAMS TO IMPROVE FLOOD CONTROL AND POWER GENERATION
水电大坝防洪发电运行支撑系统

ITO Hiroyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITO Hiroyuki', 18)}}的其他基金

Curriculum development to improve teaching ability of Graduate Students at a Professional School of Teacher Education by the synergy effects between incumbent students and graduate students
通过在职学生和研究生之间的协同效应进行课程开发,以提高师范学院研究生的教学能力
  • 批准号:
    16K04473
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive changes of neuron ensemble activities under neural operant conditioning
神经操作性条件反射下神经元集合活动的适应性变化
  • 批准号:
    16K01966
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cytotoxicity caused by long-term propofol treatment in human induced pluripotent stem cell-derived cell lines
长期丙泊酚治疗对人诱导多能干细胞来源的细胞系造成的细胞毒性
  • 批准号:
    16K20380
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cognition-emotion network in autism spectrum disorder: A functional imaging study
自闭症谱系障碍的认知-情感网络:功能成像研究
  • 批准号:
    15K17271
  • 财政年份:
    2015
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Changing the paradigm from corporate governance toward organizational governance
从公司治理到组织治理的转变
  • 批准号:
    24653082
  • 财政年份:
    2012
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A Study on Cell-Size RF CMOS Transceiver Circuit Technology
单元尺寸RF CMOS收发电路技术研究
  • 批准号:
    24656225
  • 财政年份:
    2012
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Spatio-temporal analysis of intrinsic dynamics in cortical activities
皮质活动内在动力学的时空分析
  • 批准号:
    24500286
  • 财政年份:
    2012
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of elastin peptide from fish ductus arteriosus on tissue extensibility
鱼动脉导管弹性蛋白肽对组织伸展性的影响
  • 批准号:
    23500533
  • 财政年份:
    2011
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive changes appearing as aftereffects of visual adaptation
适应性变化表现为视觉适应的后遗症
  • 批准号:
    23243076
  • 财政年份:
    2011
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Activities of the visual system during eye blinks
眨眼时视觉系统的活动
  • 批准号:
    22653092
  • 财政年份:
    2010
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research

相似海外基金

Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
  • 批准号:
    23K03032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
  • 批准号:
    23K03066
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theta Functions and Log Calabi Yau Varieties
Theta 函数和 Log Calabi Yau 品种
  • 批准号:
    2055089
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Continuing Grant
K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint
从密不可分的角度来看 K3 表面和 Calabi-Yau 品种
  • 批准号:
    20K14296
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on the formal groups of low-dimensional Calabi-Yau varieties
低维Calabi-Yau变体形式群的研究
  • 批准号:
    18K03200
  • 财政年份:
    2018
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2018
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2017
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Deformation and classification of Fano varieties and Calabi-Yau varieties
Fano变种和Calabi-Yau变种的变形和分类
  • 批准号:
    16K17573
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2015
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了