非正則ジーゲル保型形式のフーリエ展開と保型的L関数の研究

不规则Siegel自同构形式和自同构L函数的傅立叶展开研究

基本信息

项目摘要

1.次数2のジーゲル保型形式のフーリエ展開は、大域的一般化Whittaker模型(前年度までの報告では、大域的Bessel模型と呼んでいたもの)なるもので記述される。前年度までの研究で、かなり広い範囲のジーゲル保型形式に関して大域的Bessel模型の実素点における寄与(局所一般化Whittaker関数)が、MeijerのG関数なる一般化超幾何方程式の解で表示されることが分かっていた。今年度はこの結果に関する論文の執筆を行った。この論文にはさらに、局所一般化Whittaker関数が通常の局所Whittaker関数からの積分変換で得られるという観察も含ませる予定である。この観祭は、ジーゲル尖点形式の標準L関数の積分表示との親和性が高いのではないかとの指摘を、京都大学数理解析研究所における講演の際に受けた。この方向に関しての考察をはじめた。なお、局所一般化Whittaker関数に関するこれらの研究は、スピノールL関数のAndrianov型積分の実素点の寄与を明示的に計算することを念頭に行われたが、これらの応用に関しては別の論文にまとめる予定である。2.前年度までに執筆した論文"L-functions for generic cusp forms on GSp(2)XGL(2)"(採録決定済み)に関して数回の口頭発表を行った。なお、この論文では、Novodvorsky積分のある一変種が上述のAndrianov積分の特別な場合に相当していることを注意しておいた。3.以上のように、当初の研究計画の主要部分は、学術雑誌に採録が決定されたり投稿論文としてまとめられつつある。一方で、上述の様に複数のL関数の間の様々な積分表示理論の間に当初予期しなかった関係を認識することができ、今後研究の手がかりを得た点も有意義であった。
1. Degree 2 Description of the generalized Whittaker model for large domains (previous year's report, Bessel model for large domains) In the past year, the study of Bessel model with generalized Whittaker relation and Meijer relation was carried out. This year's results are related to the writing of papers. This paper generalizes Whittaker relations from ordinary Whittaker relations to integral transformation, and obtains the following results: The expression of integral of standard L relation in the form of cusp and the affinity of integral are discussed in detail at the Institute of Mathematical Analysis, Kyoto University. The direction of the investigation The study of the generalization of Whittaker relations is based on the calculation of the Andrianov type integral. 2. Last year, he wrote a paper entitled "L-functions for generic cusp forms on GSp(2)XGL(2)", which is related to several oral expressions. The Novodvorsky integral is a special case of the Andrianov integral. 3. The main part of the original research plan is to decide whether to submit papers or not. A party, the above-mentioned complex of L related to the number of integral theory, the initial period of understanding, future research, the point of significance

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spinor L-functions for generic cusp forms on GSp(2)belonging to principal series representations
属于主级数表示的 GSp(2) 上通用尖点形式的旋量 L 函数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

森山 知則其他文献

Spherical functions for the semisimple symmetric pair (Sp(2,R),SL(2,C)) = 半単純対称対(Sp(2,R),SL(2,C))に対する球関数
半单对称对的球函数 (Sp(2,R),SL(2,C)) = 半单对称对的球函数 (Sp(2,R),SL(2,C))
  • DOI:
    10.11501/3190496
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森山 知則
  • 通讯作者:
    森山 知則

森山 知則的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('森山 知則', 18)}}的其他基金

簡約リー群の表現の分岐則を梃子とした実解析的保型形式の構成的研究
利用简化李群表示分叉定律对实解析自同构形式的建设性研究
  • 批准号:
    17K05172
  • 财政年份:
    2017
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

保型形式の周期の非消滅定理と漸近公式の研究
自守形式周期不消失定理和渐近公式的研究
  • 批准号:
    23K20785
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Drinfeld保型形式の傾斜に関するP進的手法の推進
推广 Drinfeld 自守形式梯度的 P-adic 方法
  • 批准号:
    23K03078
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式による同変玉河数予想解決への戦略
使用自守形式求解等变玉川数猜想的策略
  • 批准号:
    23K12961
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
  • 批准号:
    23K03055
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式を用いた同変玉河数予想解決への新戦略
使用自守形式求解等变玉川数猜想的新策略
  • 批准号:
    23KJ1943
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対合付き正則シンプレクティック多様体の解析的捩率を用いた保型形式の構成
使用成对正则辛流形的解析挠率构造自守形式
  • 批准号:
    23KJ1249
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型L函数の特殊値と保型形式の周期の研究
自同构L函数的特殊值和自同构形式的循环的研究
  • 批准号:
    22K03235
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型L関数の特殊値と保型形式の周期に関する研究
自同构L函数的特殊值和自同构周期的研究
  • 批准号:
    22K13891
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
K3曲面の周期と鏡映群の不変式による保型形式の研究
利用K3面周期性和反射群不变公式研究自守形式
  • 批准号:
    22K03226
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式の特殊値の数論的研究とその応用
自同构特殊值的数论研究及其应用
  • 批准号:
    22K03263
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了