Studies on nonlinear partial differential equations by potential analysis
利用势分析研究非线性偏微分方程
基本信息
- 批准号:19740062
- 负责人:
- 金额:$ 2.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a bounded smooth domain, we established a suitable boundary growth estimate for positive superharmonic functions satisfying a nonlinear inequality. Moreover, we proved the existence of positive solutions of semilinear elliptic equations that are comparable to the Poisson kernel. Also, we gave a sufficient condition for Dirichlet boundary data to guarantee the existence of positive solutions of singular semilinear elliptic equations. In regard to potential theory, we studied a doubling property of harmonic measure, an estimate for the product of the Green function and the Martin kernel, and the boundary behavior of Martin kernels.
在有界光滑区域中,我们建立了满足一个非线性不等式的正超调和函数的一个合适的边界增长估计。此外,我们还证明了与泊松核相当的半线性椭圆型方程正解的存在性。给出了奇异半线性椭圆型方程Dirichlet边值问题正解存在的一个充分条件。在位势理论方面,我们研究了调和测度的倍增性质,格林函数与Martin核的乘积的估计,以及Martin核的边界性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary behavior of solutions of the Helmholtz equation
亥姆霍兹方程解的边界行为
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Witold Karwowski;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;安田公美;安田公美;安田公美;Kumi Yasuda;安田公美;安田公美;Kumi Yasuda;安田公美;Kumi Yasuda;K. Hirata
- 通讯作者:K. Hirata
Boundary behaviour of quotients of Martin kernels
Martin 核商的边界行为
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kentaro;Hirata
- 通讯作者:Hirata
The boundary growth of superharmonic functions and positive solutions of nonlinear elliptic equations
超调和函数的边界增长与非线性椭圆方程的正解
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:H. Aikawa;K. Hirata;K. Hirata;K. Hirata
- 通讯作者:K. Hirata
Boundary behavior of quotients of Martin kernels
Martin 核商的边界行为
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kentaro;Hirata;K. Hirata;K. Hirata;K. Hirata
- 通讯作者:K. Hirata
Limits at infinity of superharmonic functions and solutions of semilinear elliptic equations of Matukuma type
超调和函数的无穷大极限及Matukuma型半线性椭圆方程的解
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Witold Karwowski;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;Kumi Yasuda;安田公美;安田公美;安田公美;Kumi Yasuda;安田公美;安田公美;Kumi Yasuda;安田公美;Kumi Yasuda;K. Hirata;K. Hirata;K. Hirata
- 通讯作者:K. Hirata
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIRATA Kentaro其他文献
Realization of less-pulsating flow of tube pump using non-circular gears and repetitive control
利用非圆齿轮和重复控制实现管式泵的脉动流量较小
- DOI:
10.1299/transjsme.17-00474 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
KATOH Kenichi;MISAWA Yosuke;SENOH Hideto;KAJII Shinnosuke;ENDO Hiroki;HIRATA Kentaro - 通讯作者:
HIRATA Kentaro
HIRATA Kentaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIRATA Kentaro', 18)}}的其他基金
Development of Control Theory for Almost-Periodic Motions - Aimed at Practical Human Assist Technology
近周期运动控制理论的发展——瞄准实用人体辅助技术
- 批准号:
24560549 - 财政年份:2012
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on nonlinear partial differential equations via potential analysis
通过势分析研究非线性偏微分方程
- 批准号:
22740081 - 财政年份:2010
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis and Synthesis for Periodic Motions including Passive Walking
包括被动步行在内的周期性运动的分析与综合
- 批准号:
21560466 - 财政年份:2009
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of unified control theory for periodic motions-Delayed Feedback and Repetitive Control-
周期运动统一控制理论研究-延迟反馈与重复控制-
- 批准号:
18560437 - 财政年份:2006
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
ARC Future Fellowships
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
非線形偏差分方程式と非線形関数方程式の可積分性・特異点とエントロピーの観点から
从非线性微分微分方程和非线性函数方程的可积性、奇异性和熵的角度
- 批准号:
23K22401 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
- 批准号:
2345225 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
- 批准号:
23H01173 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
- 批准号:
10551184 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别: