Analytic construction of optimal designs in rational and exponential regression models
有理回归模型和指数回归模型中最优设计的分析构建
基本信息
- 批准号:5400281
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2003
- 资助国家:德国
- 起止时间:2002-12-31 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear regression models are widely used to describe the dependencies between a response and an explanatory variable. Because an appropriate choice of the experimental conditions can improve the quality of statistical inference significantly, many authors have discussed the problem of designing experiments for nonlinear regression models. It is the purpose of the project to study optimal design problems for a broad class of nonlinear models with more than three parameters and various optimality criteria. In particular we will be interested in optimal designs for rational models, exponential models and the following optimality criteria: differentiable optimality criteria (e.g. D- or A-optimality criteria), non-differentiable optimality criteria (e.g. C- and E-optimality criteria). Most of the literature on optimal designs for nonlinear regression models considers the case of one or two nonlinear parameters. The models under consideration in this project contain more than two nonlinear parameters and explicit solutions of the corresponding design problems are difficult to obtain. In the project under consideration the design problems will be solved by an application of analytical methods, which were recently successfully applied by Dette and Melas in the case of linear regression models and allow to express the weights and support points of the optimal designs as analytic functions of the nonlinear parameters. On the one hand this approach yields an explicit construction of locally optimal designs in several special cases. On the other hand these results will be the basis for a determination of optimal designs with respect to Bayesian or minimax optimality criteria, and therefore the work of this project is fundamental for the construction of optimal designs in rational and exponential models with respect to these more sophisticated criteria.
非线性回归模型被广泛用于描述响应和解释变量之间的依赖关系。由于选择适当的实验条件可以显著提高统计推断的质量,许多作者讨论了非线性回归模型的实验设计问题。该项目的目的是研究一类具有三个以上参数和各种最优性准则的非线性模型的最优设计问题。特别是,我们将对理性模型,指数模型和以下最优性准则的最优设计感兴趣:可微最优性准则(例如D-或A-最优性准则),不可微最优性准则(例如C-和E-最优性准则)。大多数关于非线性回归模型最优设计的文献都考虑了一个或两个非线性参数的情况。本计画所考虑的模型包含两个以上的非线性参数,因此很难得到对应设计问题的显式解。在正在考虑的项目中,设计问题将通过应用分析方法来解决,这些方法最近被Dette和Melas成功地应用于线性回归模型的情况下,并允许将最佳设计的权重和支持点表示为非线性参数的分析函数。一方面,这种方法在几种特殊情况下产生一个明确的局部最优设计的建设。另一方面,这些结果将是确定贝叶斯或极大极小最优性标准的最优设计的基础,因此,该项目的工作是在理性和指数模型中构建这些更复杂的标准的最优设计的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Holger Dette其他文献
Professor Dr. Holger Dette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Holger Dette', 18)}}的其他基金
Efficient sampling and representation of the grain boundary geometry and composition space: atomistic simulation meets statistical methodology
晶界几何形状和成分空间的高效采样和表示:原子模拟与统计方法的结合
- 批准号:
414750139 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Structural inference for high-dimensional covariance matrices
高维协方差矩阵的结构推理
- 批准号:
213996264 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Kanonische Momente von matrixwertigen Maßen auf dem Einheitskreis
单位圆上矩阵值测度的规范矩
- 批准号:
5433517 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Statistical methods for analizing genetic association studies
分析遗传关联研究的统计方法
- 批准号:
5370833 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Matrix measured measures with applications in probability and statistics
矩阵测量在概率和统计中的应用
- 批准号:
5319775 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
New statistical tests for spatial random fields
空间随机场的新统计检验
- 批准号:
457238972 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Sublinear time methods with statistical guarantees
具有统计保证的次线性时间方法
- 批准号:
465638881 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Computationally tractable bootstrap for high-dimensional data
高维数据的计算可处理引导程序
- 批准号:
465636075 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Construction of design methodology for flexible legged locomotion robots based on optimal fusion of rigid body frames and viscoelastic elements
基于刚体框架与粘弹性元件优化融合的柔性足式运动机器人设计方法构建
- 批准号:
23K03727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of Bayesian Optimal Decision Tree Algorithm Using Metatree and Latent Class Tree by Information Theory
基于信息论的元树和潜在类树构建贝叶斯最优决策树算法
- 批准号:
23K03863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Optimal Method of Utilizing Low-Quality Recycled Aggregate for the Construction of an Advanced Recycle-Based Society
建设先进循环型社会利用劣质再生骨料的优化方法
- 批准号:
22K04400 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal signal switching control of traffic signal for road construction work in one-sided alternating traffic sections
一侧交替交通路段道路施工交通信号优化切换控制
- 批准号:
22K11920 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Construction of Optimal Estimators Using Machine Learning Tools
使用机器学习工具数值构建最优估计器
- 批准号:
2210216 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
MICRO-BODD: A Miniaturized Intelligent Construction Robot for Optimal Building Operations and Defect Detection
MICRO-BODD:用于优化建筑操作和缺陷检测的小型化智能建筑机器人
- 批准号:
577219-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Optimal construction method and pile structure of marine foundation piles by the transparent ground technique and numerical analysis
透明地基技术与数值分析优化海洋基桩施工方法及桩基结构
- 批准号:
22K04306 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Morphogenesis-based Manufacturing: Construction of optimal structures based on mechanical response of cells
基于形态发生的制造:基于细胞机械响应构建最佳结构
- 批准号:
21H04533 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on the optimal planning of investment in construction industry and infrastructures under disaster risk
灾害风险下建筑业和基础设施投资优化规划研究
- 批准号:
21K14265 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Verification of atrial fibrillation treatment in Japan through cost-effectiveness analysis and construction of optimal treatment strategy
通过成本效益分析和构建最佳治疗策略验证日本的房颤治疗
- 批准号:
20K23226 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




