Arithmetic invariants and automorphic L-functions for automorphic forms of several variables

多个变量自同构形式的算术不变量和自同构 L 函数

基本信息

  • 批准号:
    23540033
  • 负责人:
  • 金额:
    $ 3.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

We investigated arithmetic properties of Arakawa lifts, which are automorphic forms on the unitary group of degree two for a quaternion algebra over the rational number field constructed via theta lifting. In particular we obtained a formula for the square of the absolute value of a certain average of Fourier coefficients of an Arakawa lift in terms of special values of automorphic L-functions.We characterize the holomorphic Borcherds lifts on orthogonal groups of quadratic forms of signature (2, n+2) in terms of the multiplicative symmetries. We also showed that a similar fact holds for Jacobi forms.
我们研究了由theta提升构造的有理数域上的Arakawa提升的算术性质,它是四元数代数的二次酉群上的自同构形式。特别地,我们利用自同构L函数的特定值得到了Arakawa提升的傅里叶系数的某个平均值的绝对值的平方公式,并利用乘法对称性刻画了符号(2,n+2)的二次型正交群上的全纯Borcherds提升.我们还证明了类似的事实也适用于雅可比形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Borcherds lifts on Sp_2(Z), "Geometry and Analysis of Automorphic Forms of Several Variables"
Borcherds 在 Sp_2(Z) 上的提升,“多变量自守形式的几何与分析”
Igusa's modular form
Igusa 的模块化形式
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Heim;A. Murase;Atsushi Murase and Bernhard Heim;Shin-ya Koyama and Nobushige Kurokawa;A. Murase;Shin-ya Koyama and Sachiko Nakajima;A. Murase;小山信也;B. Heim and A. Murase;Shin-ya Koyama and Nobushige Kurokawa;B. Heim and A. Murase;Shin-ya Koyama and Nobushige Kurokawa;B. Heim and A. Murase
  • 通讯作者:
    B. Heim and A. Murase
Symmetries for Siegel theta functions, Borcherds lifts and automorphic Green functions
西格尔 theta 函数、Borcherds 提升和自同构格林函数的对称性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Heim;A. Murase
  • 通讯作者:
    A. Murase
A characterization of Borcherds lifts by symmetries
通过对称性描述 Borcherds 升力
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Heim;A. Murase;Atsushi Murase and Bernhard Heim;Shin-ya Koyama and Nobushige Kurokawa;A. Murase;Shin-ya Koyama and Sachiko Nakajima;A. Murase;小山信也;B. Heim and A. Murase
  • 通讯作者:
    B. Heim and A. Murase
Geometry and Analysis of Automorphic Forms of Several Variables
多变量自守形式的几何与分析
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Hamahata;T. Ichikawa;A. Murase and T. Sugano
  • 通讯作者:
    A. Murase and T. Sugano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MURASE Atsushi其他文献

MURASE Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MURASE Atsushi', 18)}}的其他基金

A study on automorphic forms of several variables with symmetries of level structure
具有水平结构对称性的多变量自同构形式的研究
  • 批准号:
    17K05186
  • 财政年份:
    2017
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on symmetries for automorphic forms and Borcherds products
自守形式和 Borcherds 积的对称性研究
  • 批准号:
    26400027
  • 财政年份:
    2014
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On automorphic forms on algebraic groups: Arithmetic invariants and automorphic L-functions
关于代数群的自同构:算术不变量和自同构 L 函数
  • 批准号:
    20540031
  • 财政年份:
    2008
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on arithmetic invariants attached to automorphic forms
自守形式算术不变量的研究
  • 批准号:
    18540057
  • 财政年份:
    2006
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on automorphic forms on algebraic groups and associated zeta functions
代数群自守形式及相关zeta函数的研究
  • 批准号:
    13440016
  • 财政年份:
    2001
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on arithmetic automorphic forms and zeta functions
算术自守形式和zeta函数的研究
  • 批准号:
    09440025
  • 财政年份:
    1997
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数群无限维抽象表示中的若干问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126309
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126354
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
半单代数群超代数的范畴O及相关研究
  • 批准号:
    12171457
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
关于代数群之覆盖群朗兰兹纲领中的若干问题
  • 批准号:
    12171422
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
例外型与Cartan型单模李超代数群阶化的分类
  • 批准号:
    12001141
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
任意特征域简约李代数简约代数群及其广义结构与表示的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
代数群与仿射Deligne-Lusztig簇
  • 批准号:
    11922119
  • 批准年份:
    2019
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
非线性代数群作用的若干问题
  • 批准号:
    11701462
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

簡約代数群の弱近似と志村多様体の数論幾何
Shimura流形的约简代数群和算术几何的弱近似
  • 批准号:
    24K16884
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
実簡約代数群の表現の絡作用素に対する幾何学的構成
实数约简代数群表示的缠绕算子的几何构造
  • 批准号:
    24K06734
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
志村多様体の数論幾何と簡約代数群の質量公式
Shimura流形的算术几何和约化代数群的质量公式
  • 批准号:
    23K19014
  • 财政年份:
    2023
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
無限次元代数群とリー代数の構造および表現とその応用
无限维代数群和李代数的结构和表示及其应用
  • 批准号:
    21J10690
  • 财政年份:
    2021
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数群作用を持つ代数多様体族の研究
具有代数群作用的代数簇族的研究
  • 批准号:
    21K03179
  • 财政年份:
    2021
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariants for algebraic group actions
代数群作用的不变量
  • 批准号:
    2441842
  • 财政年份:
    2020
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Studentship
簡約代数群とその被覆群のエンドスコピーの研究
约简代数群及其覆盖群的内窥镜研究
  • 批准号:
    20K03534
  • 财政年份:
    2020
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Chow ring and cycle map of the classifying space of a linear algebraic group
线性代数群分类空间的 Chow 环和圈图
  • 批准号:
    17K05263
  • 财政年份:
    2017
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine fibrations on algebraic varieties and algebraic group actions
代数簇上的仿射纤维和代数群作用
  • 批准号:
    15K04831
  • 财政年份:
    2015
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ホップ代数を用いたスーパー代数群の研究
用Hopf代数研究超代数群
  • 批准号:
    14J02022
  • 财政年份:
    2014
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了